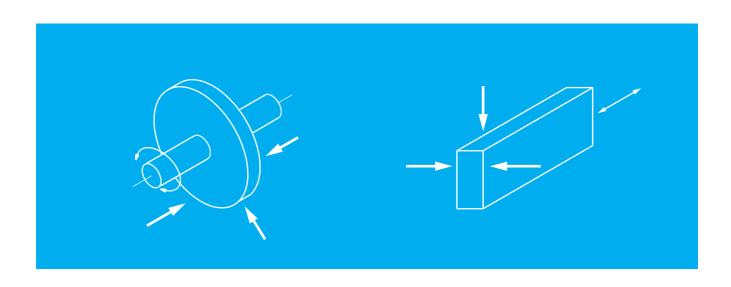


止める・留めるを確実に。

昭和30年、創業当時では珍しい「小型で扱いやすい」産業用ブレーキとして様々な産業用機械で利用できる、様々な作動源に対応したディスクブレーキを開発。そして長く使ってもらえるよう部品交換にも対応すべく、構造の簡素化を進めてきました。


弊社ではお客様の「止めたい・留めておきたい」シーンを解決する、様々な製品の開発・製造を行っております。

本カタログの数値はSI単位で記載し、 { } 内に重力単位(従来単位)を参考値として記載しています。

目 次	
ディスクブレーキとは	1
ご使用上の注意点	2
安全上のご注意	3
ディスクブレーキ使用例	·····4·5
技術資料・用語・寿命・補正係数	6
電磁クラッチ・ブレーキの特性・SI単位換算表	7
慣性モーメントと GD ²	8
選定のための計算式	9
慣性モーメント早見表	10
GD ² 早見表	11
ディスクブレーキの選定計算例	·····12·13
ディスクブレーキ選定のためのフローチャート	14
ご注文に際して	15
空・油圧兼用ディスクブレーキ	DBO型······16
空圧ディスクブレーキ	DBA型······17·18·19
油圧ディスクブレーキ	DBL型·····20·21
複動油圧ディスクブレーキ	RDB型·····22·23
選定資料	DBO·DBA·DBL·RDB型24·25
逆作動空圧解放ディスクブレーキ	NDB-A型·····26·27
逆作動空圧解放ディスクブレーキ	NDBA-50型 ·····28·29
逆作動油圧解放ディスクブレーキ	NDB型·····30·31·32
ディスク板	DP型33
ブースター(増圧器)	BO型 ······34·35
電磁ディスクブレーキ	GDN型······36·37
電磁クランプ	MDB型······38·39
電磁ディスクブレーキ&クランプ	PGDB型40·41
無励磁作動電磁ディスクブレーキ&クランプ	NGDB型42·43
無励磁作動電磁ディスクブレーキ	NGB型······44·45
デガウス (残留磁気除去装置)	DG型······46
会社概要	

ディスクブレーキとは?

- ●回転体の側面、外周の一部へ外部からの圧力をかけ、 摩擦力により制動するブレーキです。
- ●ディスク面が空気中にさらされているため放熱性がよく、高能率な安定した制動力の得られる、長寿命なブレーキです。そのため張力制御にも用いられます。
- ●円板を経由して回転を制御する他、直線運動の制御にも用いられます。
- ●静止物体の保持にも用いられます。
- ●既存の機械への追加設置が容易であり、かつ保守も容易です。

ご使用上の注意点

- ●本カタログではSI単位を主とし、重力単位「従来単位(参考値) }を従とし { }内に表示してあります。
- ●空圧、油圧、電磁のディスクブレーキを比較した場合、同じ力を発揮する本体の大きさは油圧、空圧、電磁の順で大きくなります。また、作動時間は空圧、油圧、電磁の順で長くなります。
- ●ディスク板の材質はねずみ鋳鉄FC200~250 {FC20~25} が最適です。鋼板を用いる場合にはS45C~S55Cの構造用 炭素鋼を硬度HRc32から36程度に熱処理(調質)をして下さい。熱処理を省略した場合にはディスク表面へのむしれ、かじりの発生、パッドの異常摩耗、また鳴きの発生の原因となります。また摩擦係数が安定せず制動力・保持力の低下に繋がります。

- ●通常ディスク表面へのメッキは必要ありません。メッキを必要とする場合には黒染め、あるいは亜鉛メッキをお勧めします。クロムメッキやニッケルメッキのような摩擦係数の小さな物は制動力や保持力の低下に繋がります。
- 新規取り付け直後やパッド交換直後はディスクとパッドとが 馴染んでいないために所定の制動力が出にくくなっています。 軽負荷で数分間の慣らし運転を行うことによって力が上昇してきます。
- ●完全な保持としてお使いになる場合はパッドとディスクとの 馴染みが取りづらいために摩擦係数が安定せず、制動力と比 較し40%程度の保持力の減少があります。十分な安全率を 与えてください。
- パッドの表面温度が上昇すると、制動力が減少しパッドの摩耗量が増加する傾向にあります。またパッドの摩耗量は摺速が早いほど増加します。

パッドの表面温度が著しく上昇する(制動エネルギーが大きい)場合には送風、ベンチレートディスクや水冷ディスクなどの使用により強制的な放熱を行う必要があります。

ただし、非常用のブレーキとして用いる場合には必要のない 場合もあります。

- ●標準的なパッド材質は一部を除きノンアスベスト系のレジン モールドを用いています。他にコルク系、耐摩耗用が用意さ れています。ご希望の場合は次頁の方法で形番を決定して下 さい。弊社では標準パッドのノンアスベスト化がほぼ完了し ています。
- ●標準的なディスクブレーキは左右両側から挟むキャリパータイプですが、片側や外周部を押さえる片押し(シングル)ブレーキもほぼ全機種用意されています。

- ●カタログ中のディスクブレーキはMDB型電磁クランプを除 き0.1mmから0.5mmのバックラッシュがあります。バック ラッシュの減少をご希望の場合にはお問い合わせください。
- ●弊社では油圧ディスクブレーキのシールはJIS B2401 1種A のニトリルゴムを採用しています。 標準品のすべての油圧ディスクブレーキは鉱物油仕様です。 作動油にはタービン油、スピンドル油、マルチオイルなどの 石油系作動油をご使用下さい。粘度は#32以下として下さい。 ブレーキ液用は型番の後ろにTをつけて下さい。 BO型ブースター及びNDB型逆作動油圧解放ディスクブレーキは鉱物油仕様のみを製作しています。
- ●パッドは左右均等に摩耗することはありません。パッドの交換は早めに行ってください。
- ●複数台のディスクブレーキを一枚のディスク板に配置し省スペース化を計ることができます。この場合冷却が悪くなりますので注意して下さい。
- ●本カタログには機種選定のために以下のような資料が用意されています。14頁のフローチャートを参照の上用いて下さい。

ディクスブレーキの使用例	4、5頁
クラッチブレーキの寿命	6頁
SI単位と重力単位の換算	7頁
電磁クラッチブレーキの動作特性	7頁
選定に必要な計算式	8、9頁
慣性モーメント、GD²の早見表	10、11頁
選定計算例	12、13頁
選定の手順	14頁

- 弊社に機種選定のご依頼をされる場合には、15頁の表の内容を出来るだけ詳しく記入し、参考資料等があれば合わせてご提示下さい。情報不足の場合には選定作業が不可能の場合もあります。
- ●GDN、MDB型は構造上電流遮断時に残留磁気が残りやすく、 スムーズな解放が出来ません。53頁のDG型残留磁気除去装 置の併用をお勧めします。
- ●電磁クラッチブレーキ、ディスクブレーキの仕様は定格値が 記載されています。電源箱の選定は52頁の選定表に従って 下さい。他の電源を使用する場合には定格値の20%以上余 裕を持った物を選定して下さい。

安全上のご注意

本カタログでは安全上の注意点をランク別に危険、注意の 2種類に分類してあります。

取扱を誤った場合、使用者が死亡または重 傷を負う可能性が想定される場合。

取扱を誤った場合、使用者が損害を負う危険性、及び物的損害のみの発生が想定される場合。

また、品質管理には万全を期していますが、万一の故障としてブレーキが利かずに機械が暴走したりクラッチが切れずに機械が連続運転状態となったりすることが想定されます。

これらの故障に備え安全対策には十分ご配慮下さい。特に 逆作動形や無励磁作動形を安全用途としてご利用になられ る場合には、二重三重の安全対策を設けて下さい。

尚、取扱説明書は必要時に取り出して読めるように大切に 保管するとともに、必ず最終需要家までお届けいただきた くお願いいたします。

(!) 危険

安全カバーを必ず設置して下さい。

回転中のディスク板が手・指等身体が触れると怪我のもとになります。身体が触れないように必ず風通しの良い保護カバーなどを設置して下さい。また、カバーを開けたときには回転体が急停止するように安全機構を設けて下さい。

引火爆発の危険のある雰囲気では使用しないで下さい。大きなエネルギー下での制動や連続スリップの環境では火花が発生する場合があります。引火・爆発の危険がある油脂・可燃ガスなどの雰囲気などでは使用しないで下さい。また、綿、紙などの燃えやすい所では本体及びディスクを密閉するようにして下さい。なお、密閉した場合には許容スリップ効率、許容連結仕事量、パッドの寿命等が低下するのでご注意下さい。

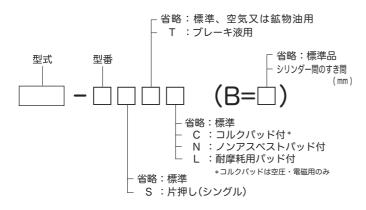
(!) 危険

許容連結・制動仕事量以内で運転して下さい。 大きなエネルギー下での制動や連続スリップの環境では 発熱が大きくなりディスク板が赤熱し火事や火傷の原因 となります。必ず許容エネルギー以下でご使用下さい。

注意

運転中には製品・ディスクに手を触れないで下さい。製品の表面温度はスリップ熱・コイルの発熱により90度から100度前後まで上昇することがあります。手を触れると火傷を負いますので運転中の製品には手や指などを触れないで下さい。運転停止後もすぐには温度は下がりません。点検などで製品に触れる場合には温度が下がったことを確認の上実施してください。

水・油脂類は付着させないで下さい。


摩擦面やディスク面に水・油脂類が付着すると保持力・制動力・トルクが著しく低下し、機械が惰走や暴 走をし怪我の原因となります。

! 危険

ボルトの締付トルク、ゆるみ止めは完全に行って下さい。ボルトの締め付け具合によってはボルトがせん断し非常に危険な状態になります。必ず規定の締付トルクで取付、接着剤やバネ座金などで確実にゆるみ止めを行って下さい。

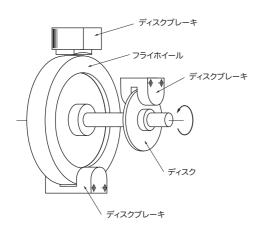
■型番の決定方法 -

ディスクブレーキの型番は以下の方法で決定して下さい。

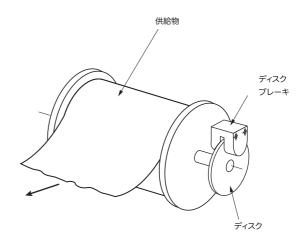
例 DBA-10SC

片押し(シングル)コルクパッド付のDBA-10型 空圧ディスクブレーキ

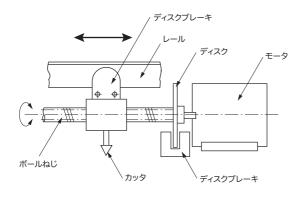
DBA-20L (B=20)

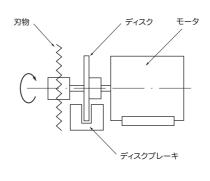

耐摩耗パッド付 (空圧・電磁のみ)

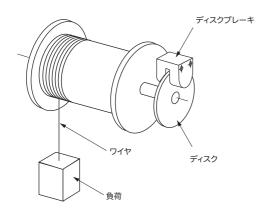
シリンダー間20mmのDBA-20型空圧ディスクブレーキ


DBO-50 (B=10)

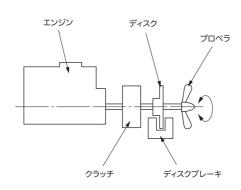
シリンダー間10mmのDBO-50型

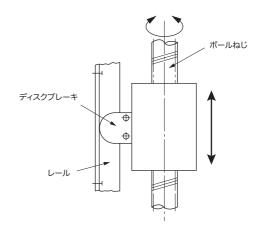

空油圧兼用ディスクブレーキ

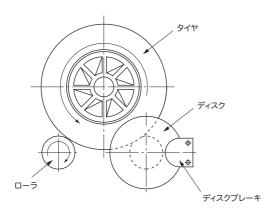

大慣性回転体の停止時間短縮、制動停止、危険防止。 フライホイール、ミキサ、工業用洗濯機、乾燥機、 食品機械、遠心分離機など。

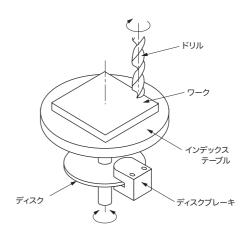

張力制御および非常停止。 繊維、製紙、製缶、製管、包装、電線供給機械など。

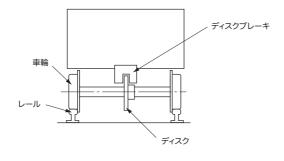
低摩擦移動による位置決め後の外力吸収および固定。 スリッタ、切断機など。

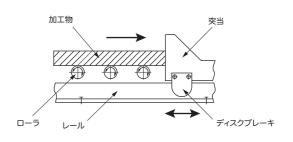

防爆用としての空圧ディスクブレーキ使用。 木工、繊維、塗装、紙加工、製材機械など。


落下防止、非常停止用に逆作動ディスクブレーキ使用。 ウインチ、エレベータ、クレーン、ゴンドラなど。


工作機械主軸の制動停止、保持、バックラッシュの除去。


電磁、湿式多板クラッチのドラグトルクの除去。 船舶、農業機械など。


ラック&ピニオン、ボールねじ使用中の 重力による落下防止。


ローラの固定および連続すべり。 負荷試験機、タイヤ洗浄機、 タキシメータ試験機など。

金属加工機、インデックステーブルによる 位置決め後の外力よりの固定。

走行車両の制動およびパーキング。 構内走行車、遊園地施設、トロッコなど。

定寸割出し用突当ての位置決め後の固定。 切断機、裁断機、ベンディングマシンなど。

技術資料 用語・寿命・補正係数

■用 語

●制動力

運動中の物体を減速あるいは停止させるための力。押しつけ力に動摩擦係数を乗じた値。

●保持力

外力のかかる物体を静止させておくための力。押しつけ力に静摩擦係数を乗じた値。

●ブレーキカ

制動力または保持力。

動摩擦係数

相対運動を行っている動摩擦状態の接触面に生じる摩擦力と法線作用力との比。

静摩擦係数

相対運動を行っていない静摩擦状態の接触面に生じる摩擦力と法線作用力との比。

制動トルク(動摩擦トルク)

摩擦面が動摩擦状態で発生するトルク。ディスクブレーキの場合、制動力にディスクの有効半径を乗じた値。

●保持トルク (静摩擦トルク)

摩擦面が静摩擦状態で発生するトルク。ディスクブレーキの場合、保持力にディスクの有効半径を乗じた値。

●ディスク有効半径

ブレーキパッドの作用点から軸心までの距離。近似的にはブレーキパッドの中心から軸心までの距離。

■容量選定について

- ●クラッチ・ブレーキはまず負荷に見合った能力のものが 選ばれ、それに使用頻度、相対速度、連結制動仕事等が 考慮され定められます。
- ●負荷トルクは負荷の不測の性質に対し下表を参照し修正をします。

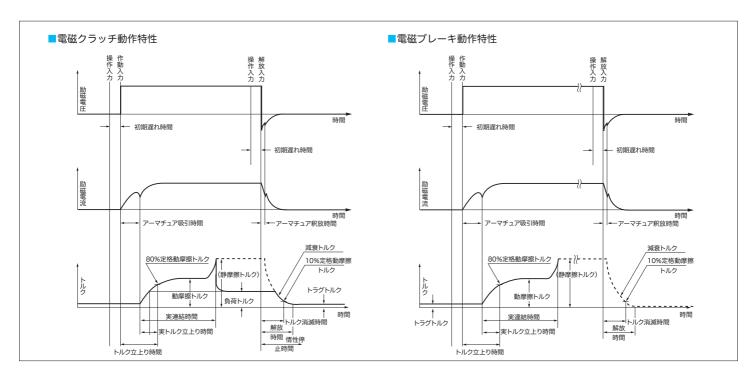
■修正係数

付加の種類機	低慣性・負荷不変 作動がスムーズ	低慣性 中頻度	高慣性 変動的負荷	高慣性・重荷重 衝撃的負荷・不測
械 原動機の 例 種類	ファン・印刷機 コンベア・事務機	コンプレッサ 巻取り機・紡織機 小型工作機	大型工作機・鍛造機 クレーン・ミキサ 押出機・厚延機	鉱山用機械・型紙機 建設機械・ブローチ 大型プレス
電動機	1.4	1.7	2.5	3.2
多気筒エンジン	1.8	2.0	2.8	3.8
単気筒エンジン	2.0	2.3	3.2	4.2

■寿 命

寿命は摩擦材の吸収可能エネルギーを単位当りのエネルギーで除すことにより求めます。但し温度・面粗度、材質により異ります。当カタログ中には標準条件での参考数値が各機種について記してあります。

寿命 =
$$\frac{\Sigma E}{\triangle E}$$
 但し $\Sigma E = \frac{V}{\omega}$


V:ライニング (パッド) 体積 cm³

 ω :摩耗率 cm^3/J $\{cm^3/kgfm\}$

ΣΕ:総エネルギーΔΕ:単位当りの仕事量J {kgfm}J {kgfm}

制動エネルギーや連結エネルギーが放熱能力(ディスク外径、回転速度、周囲温度、放熱環境、等の要因)に比べて大き過ぎるとパッドやライニングの摩耗量が増加します。パッドやライニングの表面温度をを200°C以下で使用すれば長い間使用することができます。(200°C以上になる場合には、強制冷却を考えて下さい。)但し、一回の制動エネルギーや連結エネルギーが大きくてもサイクルが長い場合には放熱され易くなります。一般的に回転速度が速いほど、ディスク外径が大きいほど、周囲温度が低いほど放熱され易くなる傾向にあります。

電磁クラッチ・ブレーキの特性・SI単位換算表

■SI単位と重力単位

本カタログではSI単位を主に表現し、重力単位{従来単位 (参考値)}を従にして{} 内に表現しています。 主な用語とそれらの常用単位について下表に示します。

主な用語	SI単位	重力単位 (従来単位)	換算係数
トルク	Nm	kgfm	1kgfm=9.8Nm
ブレーキカ 荷 重	N	kgf	1kgf=9.8N
回転速度	min ⁻¹ r/min	rpm	lrpm=lmin ⁻¹ =lr/min
エネルギー	J	kgfm erg	1kgfm=9.8J 1erg=10 ⁻⁷ J
圧 力	MPa	kgf/cm²	1kgf/cm²=0.098 MPa
摩耗率	cm³/J	cm³/kgfm	$1 \text{ cm}^3/\text{kgfm} = \frac{\text{cm}^3}{9.8 \text{J}}$
仕 事 率	W	kgfm/min	$1 \text{kgf/min} = \frac{9.8}{60} \text{w}$
時 間	S	sec	lsec=ls
動 粘 度	Cst	mm²/s	1Cst=1mm²/s

換算係数に用いている重力加速度は厳密には9.80665となりますが、計算や表示が繁雑になるとともに実用上の誤差が無視できる程小さいため9.8を使用しています。

■SI単位と換算表

	Pa	MPa	bar	kgf/cm²	mmH₂O	mmHg又は Torr
	1	1×10 ⁻⁶	1×10 ⁻⁵	1.02×10 ⁻⁵	1.02×10 ⁻¹	7.5×10 ⁻³
圧	1×10 ⁶	1	10	1.02×10	1.02×10⁵	7.5×10 ³
カ	1× 10 ⁵	0.1	1	1.02	1.02×10 ⁴	7.5×10 ²
, ,	9.8×10⁴	9.8×10 ⁻²	9.8×10 ⁻¹	1	1.00×10 ⁴	7.36×10 ²
	9.8	9.8×10 ⁻⁶	9.8×10 ⁻⁵	1.00×10 ⁻⁴	1	7.36×10 ⁻²
	1.33×10 ²	1.33×10 ⁻⁴	1.33×10 ⁻³	1.36×10 ⁻³	1.36×10	1

注 1Pa=1N/m²

仕事	J	MJ	kWh	kgfm	kcal
•	1	1× 10 ⁻⁶	2.78×10^{-7}	1.02× 10 ⁻¹	2.39 × 10 ⁻⁴
エネルギ	1× 10 ⁶	1	0.28	1.02× 10⁵	2.39 × 10 ²
半	3.6×10^{6}	3.6	1	3.67× 10⁵	8.6 × 10 ²
	9.8	9.8 × 10 ⁻⁶	2.72×10^{-6}	1	2.34×10^{-3}
熱量	4.19 × 10 ³	4.19 × 10 ⁻³	1.16 × 10 ⁻³	4.27 × 10 ²	1

注 1J=1Ws、1Wh=3600Ws

熱仕	W	kgfm/s	kcal/h	PS
熱生事率	,	0 ,	•	3
'	I	1.02×10 ⁻¹	0.86	1.36×10 ⁻³
工率	9.8	1	8.43	1.33×10 ⁻²
•	1.16	1.19×10 ⁻¹	1	1.58×10 ⁻³
流力	7.36×10 ²	7.5×10	6.33×10 ²	1

注 1W=1J/s

比	J/kgK J/kg°C	kcal /kg°C cal /g°C
熱	1 4.19 × 10 ³	2.39 × 10 ⁻⁴

	Ν	dyn	kgf
カ	1	1 × 10 ⁵	1.02×10^{-1}
	1× 10 ⁻⁵	1	1.02 × 10 ⁻⁶
	9.8	9.8 × 10 ⁵	1

慣性モーメントとGD²

■慣性モーメントとGD²

	in the state of th	慣性モーメントJ	GD²
中実円柱		$J=rac{1}{8}$ m D^2 10頁の早見表参照	$\mathrm{GD}^2 = \frac{1}{2}\mathrm{WD}^2$ $= \frac{\pi}{8} \rho \mathrm{LD}^4$ 11頁の早見表参照
中空円柱	D d	$J = \frac{1}{8}$ m(D ² +d ²)	日頃の羊兒教参照 $GD^{2} = \frac{1}{2}W(D^{2}+d^{2})$ $= \frac{\pi}{8} \rho L(D^{4}-d^{4})$
立方体		$J = \frac{1}{12} m(a^2 + b^2)$	$GD^{2} = \frac{1}{3}W(a^{2}+b^{2})$ $= \frac{1}{3}\rho abc(a^{2}+b^{2})$
直線運動		$J = \frac{1}{4} mD^2$	GD ² =WD ²
ネジ直進	P: U – K (m)	$J = \frac{1}{4} m (P/\pi)^2$	$GD^2=W(P/\pi)^2$
加法の定理	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$J = J_1 + J_2 + J_3 + \cdots$	$GD^2 = GD_1^2 + GD_2^2 + GD_3^2 + \cdots$
任意軸に関して	J1、GD ² ———————————————————————————————————	J=J ₁ +mR ²	GD ² =GD ² +4WR ²
軸変換	【C/B】 J、GD² N 負荷 J₁、GD² N₁	$J = J_1 \left(\frac{N_1}{N}\right)^2$	$GD^2 = GD_1^2 \left(\frac{N_1}{N}\right)^2$

■容量選定のための計算式

	全国	SI単位	重力単位系(従来単位系)
	原動機の出力より 1 トルクを求める	$T = \frac{9550 \text{kW}}{\text{N}}$ $T = \frac{7017 \text{HP}}{\text{N}}$ $T = \frac{7154 \text{PS}}{\text{N}}$ (原動機の起動トルクは公称出力より計	$T = \frac{973 \text{kW}}{\text{N}}$ $T = \frac{716 \text{HP}}{\text{N}}$ $T = \frac{730 \text{PS}}{\text{N}}$
	2 連結制動トルク	$T = \frac{JN}{9.55t} \pm T_1$	$T = \frac{GD^2 \cdot N}{375t} \pm T_1$
	3 切削トルク	$T = \frac{9.55FV}{N\eta}$	$T = \frac{9.55WV}{N\eta}$
	4 摩擦を伴う水平運動	$T = \frac{9.55\mu FV}{N\eta}$	$T = \frac{9.55\mu WV}{N\eta}$
	水平運動する物体の 5 直線制動	$F = \frac{mV}{t}$ または $F = \alpha m$	$F = \frac{WV}{gt}$ または $F = \alpha W/g$
	6 連結制動時間	$t = \frac{J \cdot N}{9.55(T \pm T_1)} = \frac{\pi J \cdot N}{30(T \pm T_1)}$	$t = \frac{GD^2 \cdot N}{375(T \pm T_1)}$
	7 正逆転時間	$t = \frac{JN}{9.55} \cdot \left(\frac{N}{T - T_1} + \frac{N_1}{T + T_1} \right)$	$t = \frac{GD^2 \cdot N}{375} \cdot \left(\frac{N}{T - T_1} + \frac{N_1}{T + T_1} \right)$
	8 水平直線制動時間	$t = \frac{mV}{F}$ または $F = \frac{V}{\alpha}$	$t = \frac{WV}{gF}$ $\sharp \hbar t = \frac{V}{\alpha g}$
\#	9 加減速	$E = \frac{JN^2}{182} \cdot \left(\frac{T}{T \pm T_1}\right)$	$E = \frac{GD^2 \cdot N^2}{7160} \cdot \left(\frac{T}{T \pm T_1}\right)$
連結・制	10 正逆転	$E = \frac{J(N+N_1)^2}{182}$	$E = \frac{GD^2 (N + N_1)^2}{7160}$
制動仕事量	11 連続滑り	$E = \frac{2\pi NTt}{60}$	$E = \frac{2\pi NTt}{60}$
	12 直線運動	$E = \frac{mV^2}{2}$	$E = \frac{WV^2}{2g}$

■記号の意味

	SI単位		重力単位系(従来単位系)	
	T :トルク	Nm	T :トルク	kgfm
	(kW:原動機出力	kW)	kW:原動機出力	kW
	(HP: //	HP)	HP: "	HP
	(PS: //	PS)	PS: "	PS
	N :回転速度	min ⁻¹	N:回転数	rpm
	J :慣性モーメント	kgm²	GD ² :フライホイール効果	kgf m²
記	t :制動・連結時間	S	t :制動・連結時間	sec
号	T₁:負荷トルク	Nm	T1:負荷トルク	kgfm
の	N₁:回転速度	min ⁻¹	N1:回転数	rpm
意	η :機械効率	無単位	η :機械効率	無単位
味	μ :摩擦係数	無単位	μ :摩擦係数	無単位
310	m :質量	kg	W :重量・切削力	kgf
	V :速度	m/s	V :速度	m/sec
	g :重力加速度	m/s^2	g :重力加速度	m/sec ²
	α:制動加速度	m/s^2	α:制動加速度	m/sec ²
	E :仕事量	J	E :仕事量	kgfm
	F :制動力、荷重	N	F :制動力、荷重	kgf
			ρ :比重	kg/m³

回転円柱の慣性モーメント早見表

		長さ	ー) IOmmの中	実円柱体	鉄鋼(密	·度7.85 g/	/cm³) <u>単</u>	· 位 ×10 ⁻⁴	kgm²	
直径 (mm)	0	1	2	3	4	5	6	7	8	9
10	0.00077	0.00113	0.00160	0.00220	0.00296	0.00390	0.00505	0.00644	0.00809	0.01004
20	0.01233	0.01499	0.01805	0.02157	0.02557	0.03010	0.03522	0.04096	0.04737	0.05451
30	0.06242	0.07117	0.08081	0.09140	0.10299	0.11565	0.12944	0.14444	0.16070	0.17829
40	0.19729	0.21777	0.23981	0.26348	0.28886	0.31602	0.34506	0.37606	0.40910	0.44428
50	0.48167	0.52138	0.56349	0.60810	0.65531	0.70521	0.75792	0.81352	0.87213	0.93385
60	0.99879	1.06706	1.13877	1.21404	1.29297	1.37570	1.46233	1.55299	1.64780	1.74689
70	1.85038	1.95841	2.07109	2.18857	2.31098	2.43845	2.57113	2.70915	2.85265	3.00177
80	3.15667	3.31749	3.48438	3.65748	3.83695	4.02296	4.21564	4.41516	4.62168	4.83537
90	5.05638	5.28488	5.52104	5.76503	6.01701	6.27717	6.54568	6.82270	7.10843	7.40304
100	7.70672	8.01964	8.34200	8.67398	9.01577	9.36757	9.72956	10.10194	10.48491	10.87866
110	11.28341	11.69934	12.12667	12.56560	13.01634	13.47910	13.95409	14.44152	14.94162	15.45459
120	15.98065	16.52004	17.07296	17.63965	18.22033	18.81523	19.42458	20.04862	20.68757	21.34167
130	22.01116	22.69628	23.39727	24.11438	24.84785	25.59792	26.36484	27.14887	27.95026	28.76926
140	29.60613	30.46113	31.33451	32.22654	33.13748	34.06760	35.01716	35.98644	36.97570	37.98522
150	39.01527	40.06612	41.13807	42.23138	43.34634	44.48323	45.64234	46.82396	48.02838	49.25588
160	50.50676	51.78131	53.07984	54.40264	55.75001	57.12225	58.51967	59.94258	61.39128	62.86608
170	64.36729	65.89523	67.45022	69.03256	70.64258	72.28060	73.94694	75.64193	77.36590	79.11916
180	80.90206	82.71492	84.55808	86.43187	88.33663	90.27271	92.24043	94.24015	96.27221	98.33696
190	100.43474	102.56591	104.73081	106.92981	109.16325	111.43151	113.73492	116.07387	118.44870	120.85980
200	123.30751	125.79222	128.31429	130.87410	133.47202	136.10842	138.78369	141.49821	144.25235	147.04650
210	149.88105	152.75639	155.67289	158.63096	161.63099	164.67338	167.75851	170.88679	174.05862	177.27439
220	180.53453	183.83942	187.18948	190.58513	194.02676	197.51479	201.04964	204.63173	208.26147	211.93929
230	215.66561	219.44085	223.26543	227.13980	231.06437	235.03958	239.06586	243.14365	247.27339	251.45551
240	255.69046	259.97867	264.32060	268.71669	273.16739	277.67315	282.23442	286.85166	291.52532	296.25585
250	301.04373	305.88941	310.79335	315.75602	320.77788	325.85941	331.00108	336.20336	341.46671	346.79163
260	352.17858	357.62805	363.14052	368.71648	374.35640	380.06077	385.83009	391.66485	397.56553	403.53264
270	409.56667	415.66812	421.83748	428.07527	434.38198	440.75812	447.20421	453.72074	460.30822	466.96719
280	473.69814	480.50159	487.37807	494.32809	501.35218	508.45087	515.62466	522.87411	530.19973	537.60206
290	545.08163	552.63897	560.27463	567.98914	575.78305	583.65689	591.61121	599.64656	607.76349	615.96254
300	624.24428	632.60924	641.05800	649.59110	658.20910	666.91258	675.70208	684.57818	693.54144	702.59243
310	711.73173	720.95990	730.27751	739.68515	749.18340	758.77282	768.45401	778.22755	788.09402	798.05401
320	808.10811	818.25691	828.50100	838.84098	849.27745	859.81100	870.44223	881.17174	892.00015	902.92805
330	913.95605	925.08476	936.31480	947.64677	959.08129	970.61898	982.26046	994.00634	1005.85725	1017.81382
340	1029.87667	1042.04642	1054.32372	1066.70918	1079.20344	1091.80714	1104.52092	1117.34541	1130.28126	1143.32910
350	1156.48959	1169.76337	1183.15108	1196.65338	1210.27092	1224.00436	1237.85434	1251.82153	1265.90658	1280.11016
360	1294.43293	1308.87556	1323.43871	1338.12305	1352.92925	1367.85798	1382.90992	1398.08575	1413.38613	1428.81176
370	1444.36331	1460.04146	1475.84691	1491.78034	1507.84243	1524.03388	1540.35538	1556.80763	1573.39132	1590.10715
380	1606.95582	1623.93804	1641.05449	1658.30590	1675.69297	1693.21641	1710.87693	1728.67524	1746.61206	1764.68810
390	1782.90408	1801.26073	1819.75876	1838.39890	1857.18188	1876.10842	1895.17926	1914.39512	1933.75674	1953.26485
400	1972.92019	1992.72350	2012.67552	2032.77699	2053.02866	2073.43127	2093.98557	2114.69232	2135.55226	2156.56615
410	2177.73473	2199.05878	2220.53905	2242.17630	2263.97129	2285.92479	2308.03757	2330.31039	2352.74402	2375.33924
420	2398.09682	2421.01753	2444.10216	2467.35148	2490.76628	2514.34733	2538.09543	2562.01136	2586.09591	2610.34987
430	2634.77403	2659.36918	2684.13613	2709.07567	2734.18861	2759.47573	2784.93785	2810.57578	2836.39031	2862.38226
440	2888.55245	2914.90167	2941.43075	2968.14051	2995.03176	3022.10532	3049.36201	3076.80267	3104.42811	3132.23916
450	3160.23666	3188.42142	3216.79430	3245.35612	3274.10771	3303.04992	3332.18359	3361.50957	3391.02868	3420.74179
460	3450.64974	3480.75337	3511.05355	3541.55112	3572.24694	3603.14187	3634.23677	3665.53249	3697.02990	3728.72987
470	3760.63326	3792.74094	3825.05378	3857.57265	3890.29843	3923.23199	3956.37421	3989.72597	4023.28815	4057.06163
480	4091.04730	4125.24605	4159.65876	4194.28632	4229.12963	4264.18959	4299.46708	4334.96301	4370.67827	4406.61377
490	4442.77042	4479.14910	4515.75074	4552.57625	4589.62653	4626.90249	4664.40505	4702.13513	4740.09365	4778.28152
500	4816.69967	4855.34903	4894.23051	4933.34504	4972.69356	5012.27700	5052.09628	5092.15235	5132.44614	5172.97858

直径255mm、長さ28mmの中実円柱の慣性モーメントを求める。

表の使い方……鉄鋼の場合

表の縦軸250と横軸5との交点より325.65941× 10^{-4} kgm²を得、これに長さの $\frac{1}{10}$ を乗じて 325.65941× 10^{-4} × $\frac{28}{10}$ =0.09118kgm²を得る。

鉄鋼の慣性モーメントを求めた後に 鉄鋼との密度比 ^{2.72} =0.346を乗じる。

アルミの場合

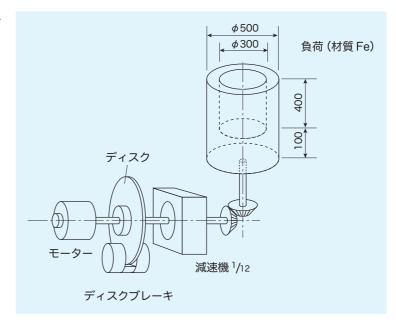
G D²早見表

回転円柱のGD²早見表

		長さ	10mmの中3	実円柱体		度7.85g/c		位 ×10 ⁻⁴	kgfm ²	
直径 (mm)	0	1	2	3	4	5	6	7	8	9
10	0.0031	0.0045	0.0064	0.0088	0.0118	0.0156	0.0202	0.0257	0.0324	0.0402
20	0.0493	0.0600	0.0722	0.0863	0.1023	0.1204	0.1409	0.1638	0.1895	0.2180
30	0.2497	0.2847	0.3232	0.3656	0.4120	0.4626	0.5178	0.5777	0.6428	0.7132
40	0.7892	0.8711	0.9592	1.0539	1.1554	1.2641	1.3803	1.5043	1.6364	1.7771
50	1.9267	2.0855	2.2539	2.4324	2.6212	2.8209	3.0317	3.2541	3.4885	3.7354
60	3.9952	4.2682	4.5551	4.8561	5.1719	5.5028	5.8493	6.2120	6.5912	6.9876
70	7.4015	7.8336	8.2844	8.7543	9.2439	9.7538	10.2845	10.8366	11.4106	12.0071
80	12.6267	13.2700	13.9375	14.6299	15.3478	16.0918	16.8626	17.6606	18.4867	19.3415
90	20.2255	21.1395	22.0842	23.0601	24.0681	25.1087	26.1827	27.2908	28.4337	29.6122
100	30.8269	32.0786	33.3680	34.6959	36.0631	37.4703	38.9182	40.4077	41.9396	43.5147
110	45.1336	46.7974	48.5067	50.2624	52.0654	53.9164	55.8164	57.7661	59.7665	61.8183
120	63.9226	66.0802	68.2918	70.5586	72.8813	75.2609	77.6983	80.1945	82.7503	85.3667
130	88.0446	90.7851	93.5891	96.4575	99.3914	102.3917	105.4594	108.5955	111.8011	115.0771
140	118.4245	121.8445	125.3380	128.9062	132.5499	136.2704	140.0687	143.9548	147.9028	151.9409
150	156.0611	160.2645	164.5523	168.9255	173.3854	177.9329	182.5694	187.2958	192.1135	197.0235
160	202.0270	207.1253	212.3194	217.6106	223.0000	228.4890	234.0787	239.7703	245.5651	251.4643
170	257.4692	263.5809	269.8009	276.1302	282.5703	289.1224	295.7878	302.5677	309.4636	316.4766
180	323.6082	330.8597	338.2323	345.7275	353.3465	361.0908	368.9617	376.9606	385.0888	393.3478
190	401.7390	410.2636	418.9232	427.7192	436.6530	445.7260	454.9397	464.2955	473.7948	483.4392
200	493.2300	503.1689	513.2572	523.4964	533.8881	544.4337	555.1348	565.9928	577.0094	588.1860
210	599.5242	611.0255	622.6916	634.5239	646.5240	658.6935	671.0340	683.5472	696.2345	709.0976
220	722.1381	735.3577	748.7579	762.3405	776.1070	790.0592	804.1986	818.5269	833.0459	847.7572
230	862.6624	877.7634	893.0617	908.5592	924.2575	940.1583	956.2634	972.5746	989.0936	1005.8220
240	1022.7618	1039.9147	1057.2824	1074.8668	1092.6696	1110.6926	1128.9377	1147.4066	1166.1013	1185.0234
250	1204.1749	1223.5576	1243.1734	1263.0241	1283.1115	1303.4377	1324.0043	1344.8134	1365.8669	1387.1665
260	1408.7143	1430.5122	1452.5621	1474.8659	1497.4256	1520.2431	1543.3204	1566.6594	1590.2621	1614.1306
270	1638.2667	1662.6725	1687.3499	1712.3011	1737.5279	1763.0325	1788.8168	1814.8829	1841.2329	1867.8687
280	1894.7925	1922.0064	1949.5123	1977.3124	2005.4087	2033.8035	2062.4987	2091.4964	2120.7989	2150.4082
290	2180.3265	2210.5559	2241.0985	2271.9566	2303.1322	2334.6276	2366.4448	2398.5862	2431.0540	2463.8502
300	2496.9771	2530.4370	2564.2320	2598.3644	2632.8364	2667.6503	2702.8083	2738.3127	2774.1658	2810.3697
310	2846.9269	2883.8396	2921.1100	2958.7406	2996.7336	3035.0913	3073.8160	3112.9102	3152.3761	3192.2160
320	3232.4324	3273.0276	3314.0040	3355.3639	3397.1098	3439.2440	3481.7689	3524.6870	3568.0006	3611.7122
330	3655.8242	3700.3390	3745.2592	3790.5871	3836.3252	3882.4759	3929.0418	3876.0254	4023.4290	4071.2553
340	4119.5067	4168.1857	4217.2949	4266.8367	4316.8138	4367.2286	4418.0837	4469.3817	4521.1250	4573.3164
350	4625.9584	4679.0535	4732.6043	4786.6135	4841.0837	4896.0174	4951.4174	5007.2861	5063.6263	5120.4407
360	5117.7317	5235.5022	5293.7548	5352.4922	5411.7170	5471.4319	5531.6397	5592.3430	5653.5445	5715.2470
370	5777.4532	5840.1659	5903.3876	5967.1213	6031.3697	6096.1355	6161.4215	6227.2305	6293.5653	6360.4286
380	6427.8233	6495.7521	6564.2180	6633.2236	6702.7719	6772.8656	6843.5077	6914.7010	6986.4482	7058.7524
390	7131.6163	7205.0429	7279.0350	7353.5956	7428.7275	7504.4337	7580.7170	7657.5805	7735.0269	7813.0594
400	7891.6807	7970.8940	8050.7021	8131.1080	8212.1146	8293.7251	8375.9423	8458.7693	8542.2090	8626.2646
410	8710.9389	8796.2351	8882.1562	8968.7052	9055.8852	9143.6992	9232.1503	9321.2415	9410.9761	9501.3570
420	9592.3873	9684.0701	9776.4086	9869.4059	9963.0651	10057.3893	10152.3817	10248.0454	10344.3836	10441.3995
430	10539.0961	10637.4767	10736.5445	10836.3027	10936.7544	11037.9029	11139.7514	11242.3031	11345.5612	11449.5291
	11554.2098	11659.6067	11765.7230	11872.5620	11980.1270	12088.4213	12197.4481	12307.2107	12417.7124	12528.9566
450	12640.9466	12753.6857	12867.1772	12981.4245	13096.4308	13212.1997	13328.7344	13446.0383	13564.1147	13682.9672
460	13802.5989	13923.0135	14044.2142	14166.2045	14288.9878	14412.5675	14536.9471	14662.1300	14788.1196	14914.9195
470	15042.5330	15170.9638	15300.2152	15430.2906	15561.1937	15692.9280	15825.4968	15958.9039	16093.1526	16228.2465
480	16364.1892	16500.9842	16638.6350	16777.1453	16916.5185	17056.7584	17197.8683	17339.8520	17482.7131	17626.4551
	17771.0817	17916.5964	18063.0030	18210.3050	18358.5061	18507.6100	18657.6202	18808.5405	18960.3746	19113.1261
	19266.7987	19421.3961			19890.7742		20208.3851	20368.6094	20529.7845	20691.9143
± 0 /	13200.1301	13741.3301	13310.3220	13133.3002	13030.1142	20043.100U	20200.3031	20300.0054	20023.7043	20031.3143

表の使い方……鉄鋼の場合

直径255mm、長さ28mmの中実円柱の GD^2 を求める。


表の縦軸250と横軸5との交点より1303.4377×10 $^{-4}$ kgm²を得、これに長さの $\frac{28}{10}$ を乗じて 鉄鋼との比重比 $\frac{2.72}{7.85}$ =0.346を乗じる。 1303.4377× 10^4 $\frac{28}{10}$ =0.3650kgfm²を得る。

アルミの場合

鉄鋼のGD²を求めた後に

ディスクブレーキの選定計算例

条件:モーター 10kW、1450min⁻¹ {rpm} 空圧正作動ディスクブレーキ希望 最大供給圧力 0.5MPa {5kgf/cm²} 最大ディスク外径 400mm以下 停止までの時間 0.3秒 頻度 3回/時間 24時間/日

1. 負荷物の慣性モーメント J { G D²}を求める。(8 頁参照) まず、中実円柱と中空円柱に分けて考える。

① 質量
$$m_1 = 50.0^2 \times \pi / 4 \times 7.85 \times 10.0 \times 10^{-3} = 154 \text{ kg}$$

$$J_1 = \frac{1}{8} \text{ m } D^2 = \frac{1}{8} \times 154 \times 0.5^2 = 4.81 \text{ kgm}^2$$

$$\{GD_1^2 = \frac{1}{2}WD^2 = \frac{1}{2} \times 154 \times 0.5^2 = 19.25 \text{ kgfm}^2\}$$

② 質量
$$m_2 = (50.0^2 - 30.0^2) \times \pi/4 \times 40.0 \times 7.85 \times 10^{-3} = 395 \text{ kg}$$

$$J_2 = \frac{1}{8} \text{ m } (D^2 + d^2) = \frac{1}{8} \times 395 \times (0.5^2 + 0.3^2) = 16.79 \text{ kgm}^2$$

$$\{GD_2^2 = \frac{1}{2}W(D^2 + d^2) = \frac{1}{2} \times 395 \times (0.5^2 + 0.3^2) = 67.15 \text{ kgfm}^2\}$$

よって全慣性モーメント J {GD²}は

$$J_3 = J_1 + J_2 = 4.81 + 16.79 = 21.6 \text{ kgm}^2$$

$$\{GD_3^2 = GD_1^2 + GD_2^2 = 19.25 + 67.15 = 86.4 \text{ kgfm}^2\}$$

2. 負荷物の慣性モーメント J { G D²} を制御軸上に変換する。

$$J = J_3 \times \left(\frac{1}{12}\right)^2 = 0.15 \text{ kgm}^2$$
$$\left\{G D^2 = G D^2 \times \left(\frac{1}{12}\right)^2 = 0.6 \text{ kgfm}^2\right\}$$

3. 0.3 秒で止めるために必要なトルクを求める。(9頁参照)

$$T = \frac{J \cdot N}{9.55 t} = \frac{0.15 \times 1450}{9.55 \times 0.3} = 75.9 \text{ Nm}$$
$$\{T = \frac{G D^2 \cdot N}{375 t} = \frac{0.6 \times 1450}{375 \times 0.3} = 7.7 \text{ kgfm } \}$$

4. ディスク外径とトルクより機種を選定する。(各々の仕様及び性能グラフ・17・24・25頁参照) 外径300mmのディスクとDBA-50及び外径400mmのディスクとDBA-20の2種類の組み合わせ を選定し仕様を検討する。

A. 外径300mmのディスクとDBA - 50

ディスクの有効半径 =
$$\frac{300-63 \times 10^{-3}}{2} \times 10^{-3} = 0.119$$
m ※: パッドの外径 (mm)

0.5Mpa {5kgf/cm²} 時のトルクは

 $1000 \,\mathrm{N} \times 0.119 \,\mathrm{m} = 119 \,\mathrm{Nm} > 75.9 \,\mathrm{Nm}$

 $\{100 \text{ kgf} \times 0.119 \text{ m} = 11.9 \text{ kgfm} > 7.7 \text{ kgfm}\}$

必要制動力Fを求める

$$F = \frac{75.9}{0.119} = 638N$$
 { $F = \frac{7.7}{0.119} = 64.7 \text{ kgf}}$

この時の必要圧力は

時の必要圧力は
$$A: シリンダー面積(cm²) P = $\frac{F}{A \cdot n \cdot \mu}$ $n: 摩擦面数 \mu: 摩擦係数$$$

$$P = \frac{638}{(6.3 \times 10^{-2})^{-2} \times \pi/4 \times 2 \times 0.33} = 0.31 \times 10^{6} Pa = 0.31 Mpa$$

$$\{P = \frac{64.7}{6.3^2 \times \pi/4 \times 2 \times 0.33} = 3.1 \text{ kgf/cm}^2\}$$

寿命の検討

一回の制動エネルギーを求める。(9頁参照)

$$E = \frac{J \cdot N^2}{182} = \frac{0.15 \times 1450^2}{182} = 1733 J$$

$$\{E = \frac{G D^2 \cdot N^2}{7160} = \frac{0.6 \times 1450^2}{7160} = 176 \text{ kgfm }\}$$

33頁のグラフにて温度上昇に問題ないことを確認する。

次に26頁左上の表の値を用いてパッドの寿命の推定を行う。

安全のために250°Cの欄の70%の値にて検討を行う。

DBA-50が1台で吸収できるエネルギーは

$$E = 14.1 \times 10^{8} \text{J} \times 0.7 = 9.87 \times 10^{8} \text{J} \qquad \{E = 14.1 \times 10^{7} \text{kgfm} \times 0.7 = 9.87 \times 10^{7} \text{kgfm}\}$$

よって寿命は

$$\frac{9.87 \times 10^8}{1733} = 5.7 \times 10^5$$
回
$$\frac{9.87 \times 10^7}{176} = 5.6 \times 10^5$$
回
$$= 1.9 \times 10^5$$
時間
$$= 1.9 \times 10^5$$
時間
$$= 7900$$
日
$$= 7900$$
日

B. 外径400mmのディスクとDBA - 20

ディスクの有効半径 =
$$\frac{400-42}{2} \times 10^{-3} = 0.179$$
m

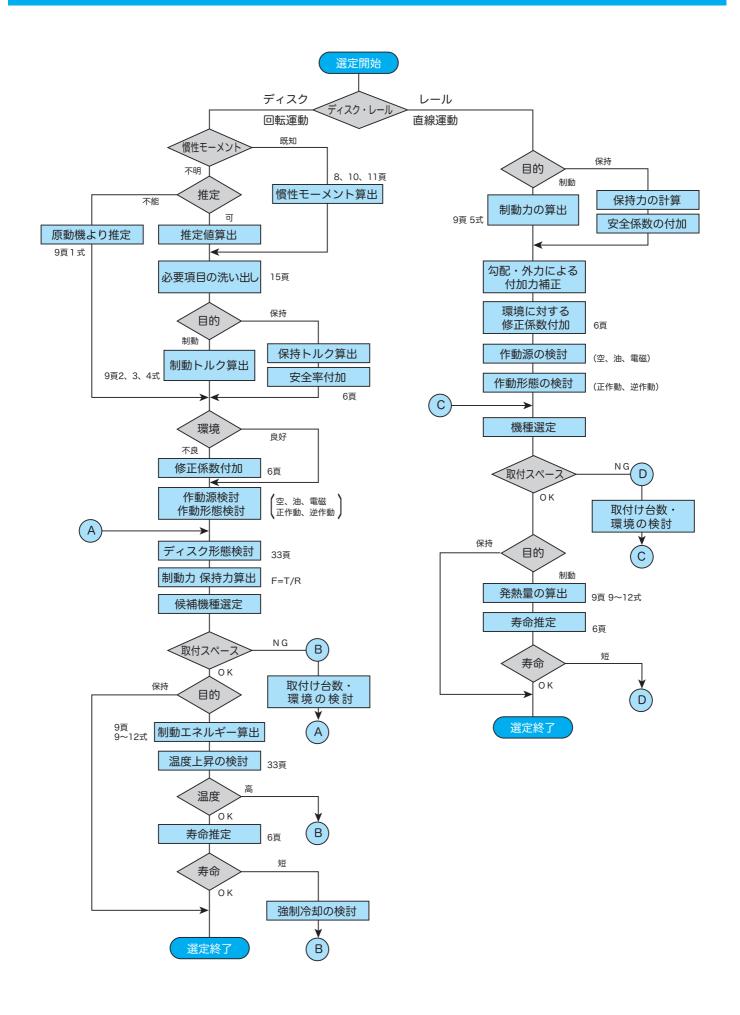
必要制動力
$$F = \frac{75.9}{0.179} = 424N$$
 { $F = \frac{7.7}{0.179} = 43 \text{ kgf}$ }

必要圧力
$$P = \frac{424}{(4.2 \times 10^{-2})^2 \times \pi / 4 \times 2 \times 0.33} = 0.46 \times 10^6 Pa = 0.46 Mpa$$

$$\{P = \frac{43}{4.2^2 \times \pi/4 \times 2 \times 0.33} = 4.7 \text{ kgf/cm}^2\}$$

DBA-20の吸収可能なエネルギー

$$E = 2.9 \times 10^{8} \times 0.7 = 2.03 \times 10^{8} \text{ J} \qquad \{E = 2.9 \times 10^{7} \times 0.7 = 2.03 \times 10^{7} \text{ kgfm}\}$$


$$\frac{2.03 \times 10^{8}}{1733} = 1.17 \times 10^{5} \text{ } \square$$

$$\frac{2.03 \times 10^{7}}{176} = 1.15 \times 10^{5} \text{ } \square$$

= 3.9 × 10 4 時間 = 3.8 × 10 4 時間 = 1600⊟ = 1600日

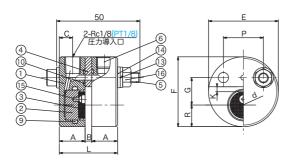
寿命より判断し外径300mmのディスクとDBA-50型を選定する。

ディスクブレーキ選定のためのフローチャート

社名	所属	氏名
	TEI	FAX

機器	器の	名	称								
使	用(固	所								
使	用目	=	的	起動	・信	上	・正逆転	ま・位:	置決め	・保	持
便	н н	=	ยภ	張力	制征	p ()
				種類				極数			
原	動		機	出力			kW HP PS	回転	速度		P in ⁻¹ pm
制	X		分	連結		制	動時	運	転		Þ
御	回転	速	度				min-1				in ⁻¹
軸							rpm N · Nm			Nn	rpm n
上) 負 ———		荷			kg	f·kgfm		k	gf · k	gfm
0	J.	G	D ²				kgm² kgfm²				
物体	の重量	<u>†</u> • <u>1</u>	質量								kg
物化	本 の	速	度								sec min
作	動	熲	度						0/	分・時	·年
運	転 8	诗	間				時間/日			日/	/年
作動	動時	間	率								%
連組	吉制 動	b H	問							sec,r	min
停止る	までの種	多動	距離							mm	·m

分			類	_	滋式 王式		王式 戒式	ディ	スク用	軸用
				乾	式	: 湿	式	正作	動	逆作動
型			番							
希	望	能	カ	トル 制動		保持力		N٠	Nm · kg	gf·kgfm
希	望	寿	命					0	・時・日・	J·kgfm
作	動	電	圧	A C D C		V	作動	圧力		MPa kgf/cm²
最	大	圧	カ			MPa kgf/cm	最低	圧力		MPa kgf/cm²
取			付	横	·	タテ	軸・	通 シ	軸・突	合軸
				++	ッ リ.	パ・片	押・フ	アーマ	'チュア	上・下
ディス	スク	反外征	圣·厚	φ			mm,	t		mm
ν-	- ル	幅・	高	幅			mm.	高		mm
	水	· Æ	由滴	多	少	無	カノ	<i>"</i>	有	無
使	塵		埃	多	少	無	有害	ガス	有	無
用用	温		度				湿	度		%
環	設	置場	易所	屋区	ካ	屋外	塩	分	有	無
境	放		熱	良	普	不良				
	保	守点	点検		:	容易	普	通	困難	


該当する単位を○で囲んで下さい。

取付状況・作動サイクル等特記事項	

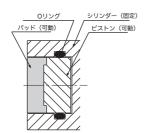
選定に当り上記項目を御調査下さい。(このページをコピーしてお使い下さい。)

DBO-5型

- ●空・油圧兼用の正作動ディスクブレーキです。
- ●小型・軽量で取り付けスペースをとりません。
- ○パッドの引き戻し及びストローク調整は全てシールの弾性を用いて行なう、最もシンプルな構造のブレーキです。
- ●作動に必要な流体体積が少ないため、立ち上がり時間が短く、高頻度に使用できます。
- ●片押しブレーキへの変更も可能です。
- ●ディスタントピースを交換することにより、ディスク厚は任意に設定することができます(出荷時に設定)。
- ●圧力を変化させることにより、ブレーキ力を無段階に制御することができます。
- ●既存の機械への取り付けが容易です。
- パッドは、ノンアスベスト系のレジンモールドの他に、耐熱・耐摩耗用、保持専用で力の大きなコルク系が用意してあります。コルク系は空圧使用のみで保持力は30~40%上昇します。
- ▲シリンダーにディスクがあたらないようにしてください。
- ◆油圧使用の場合は鉱物油を使用して下さい。
- ▲背圧がある場合、圧力に相当するブレーキ力が発生し、 パッドが戻りにくくなります。

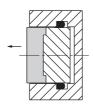
■DBO型 仕様・寸法表

	_ 1218	3 /14 1																				
型番	(at μ = 6MPa	助力 =0.33) 0.5MPa (5kgf/cm²)					ディフク原	А	В	С	d	Е	F	G	取付け ボルト	K	L	N	Р		本体構成 ボルト締 付トルク	
	N {kgf}	N {kgf}	cm ²	cm ³	MPa {kgf/cm ² }	kPa {kgf/cm ² }	mm														Nm {kgfm}	kg
DBO-5	-	80 {8}	2.54	0.3	2 {20}	80 {0.8}	3	15.5	4	8	16	42	42	16.5	M6	3	35	_	24	13	4 {0.4}	0.15

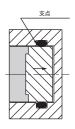

■パッド戻し機構について

●DBO型ディスクブレーキはバネはありませんが、Oリングの弾性を利用してピストンを引戻しています。その動作は下図のようになります。

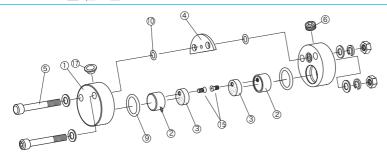
●圧力が小さい場合には解放時のピストンの戻り量が減少する傾向にあります。


1.無圧力時

ピストンがシリンダー 側にある O リングによ り保持されている。


2.加圧力時

シリンダー底部に生じた圧力によりピストン及びパッドが矢印の方向に動き、ディスクに がパッド側に押し付けられる。



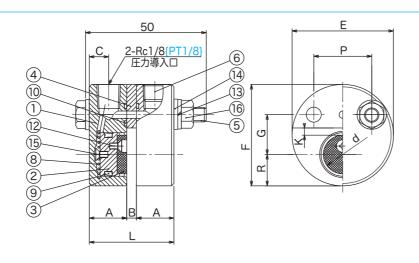
3.圧力解放時

圧力が無くなり 〇リングが元の形状に戻ろうとする時、〇リング清のをの壁を支点としていたハシも一緒に矢印の方向に引戻す。

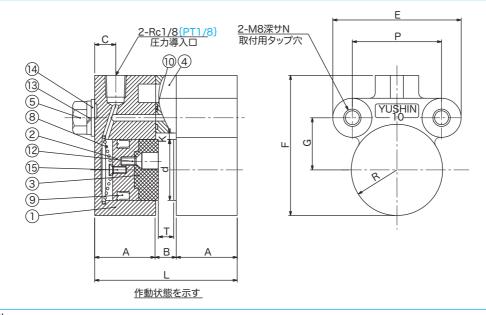
■DBO-5型 組立図

■DBO型 部品表

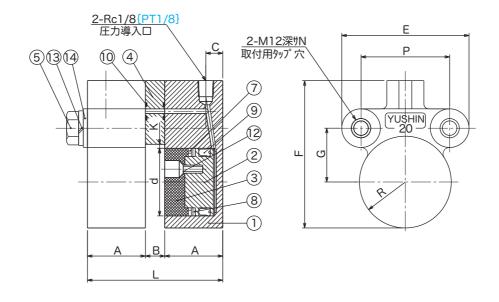
番号	部	8		名	数量	番号	部	G		名	数量
1	シ	リン	ダ	_	2	10	0	リン	グ	(기/)	2
2	ピ	ス	7	ン	2	11	ブ!	ノードス	スクリ	ュー	1
3	パ	ッ		ド	2	12	ス	チー丿	レボ・	ール	1
4	ディ	(スタン)	トピー	-ス	1	13	バ	ネ	座	金	2
5	六 1	角穴付:	ボル	-	2	14	平	Æ	莝	金	2
6	プ	ラ		グ	٦	15	Ш	小	ネ	ジ	2
9	0	リン	グ (大)	2	17	プ	ラキ	ヤ	ップ	1

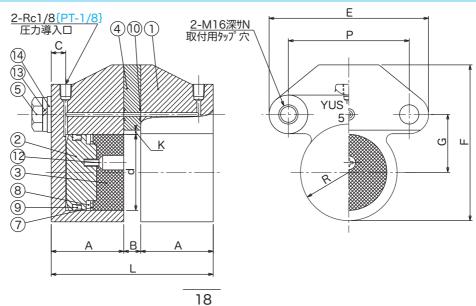

- ●空圧により作動する正作動ディスクブレーキです。
- ●小型・軽量で取り付けスペースをとりません。
- ●使用空気量が少ないため立ち上がり時間が極めて速く、高 頻度に使用することができます。また、油圧式、電磁式に 比べて最も速く作動させることができます。
- ●自動摩耗調整機構を備えているために、常に一定のストロークを保ち、無調整で使用できます(20型以上)。
- ●常時開(ノーマルオープン)の電磁弁を用いれば、安全用 途としても使用できます。
- ●既存の機械への取り付けが容易です。
- ●片押しブレーキへの変更も可能です。
- ●DBA-5型及びDBA-10型は内蔵の円錐バネの働きにより パッドを確実に動作開始地点まで引き戻します。

- ●圧力を変化させることにより、ブレーキ力は無段階に制御することができます。
- ●ポートが2か所ありますので、使い易い方を1か所使用します。高頻度の場合には両方使用します。
- ●ディスタントピースを交換することにより、ディスク厚は 任意の厚さに設定できます(出荷時に設定)。
- ●シールは無給油タイプを使用しているため、給油の必要は ありません。
- ・パッドはノンアスベスト系のレジンモールドの他に、耐熱・耐摩耗用、保持専用で力の大きなコルク系が用意してあります。コルク系の場合には保持力が30~40%上昇します。


■DBA型 仕様・寸法表

型番	制動力 (at μ = 0.33) 0.5MPa{5kgf/cm²}時	ピストン 面 積	流体 体積	常用最大圧力	標準 ディスク厚 T	А	В	С	d	E	F	G	取付けボルト	K	L	N	Р		本体構成 ボルト締 付トルク	質 量
	N {kgf}	cm ²	cm ³	MPa [kgf/cm²]	mm								רועלוול						Nm {kgfm}	kg
DBA-5	80 {8}	2.54	0.3		3	15.5	4	8	16	42	42	16.5	M6	3	35	_	24	13	4 {0.4}	0.15
DBA-10	200 {20}	6.16	1.2		7	28	9.5	9.5	28	59	64.5	24	M8	3	65.5	14	41	21	12.5 {1.25}	0.4
DBA-20	450 {45}	13.85	2.8	1 {10}	9.5	36	12	11.5	42	79	91.5	33.5	M12	3	84	19	55	28.5	40 {4.0}	1.0
DBA-50	1000 {100}	31.17	6.2		12	60	14	12	63	132	130	48	M16	3.5	134	30	100	41	95 {9.5}	7.5
DBA-100	2000 {200}	63.62	12.7		14	60	16	12	90	156	138	66	M16	7	136	33	120	54	130 {13}	8.5


■DBA-5型


■DBA-10型

■DBA-20型

■DBA-50型

数量

2

2

2

1

2

1

2

2

2

2

2

2

金 2

六角ボル

ラ

トラベルリング

パッキ

座

プラキャップ

小

リング(小)

5

6

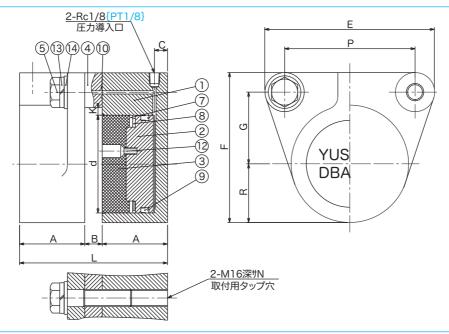
8

10 0

12

13

14

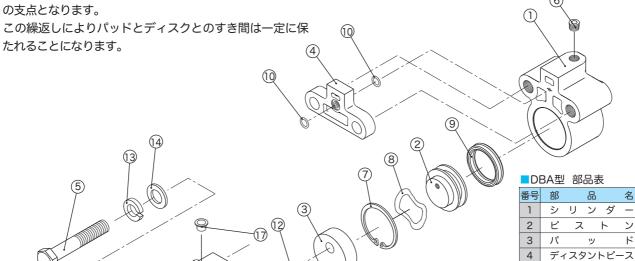

15 🔳

17

皿 小 ネ

バネ座金

■DBA-100型

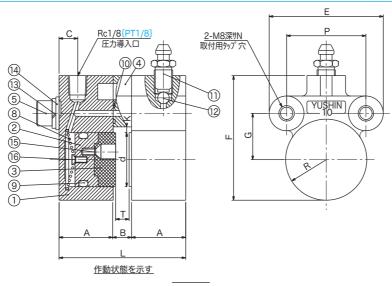


■自動摩耗調整機構

DBA-20型組立図

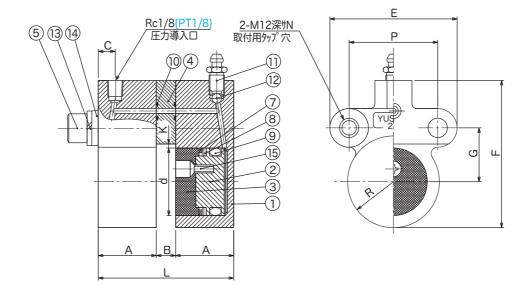
●DBA-20, 50, 100, DBL-20, 50, 100型にはブレーキ解放 時にディスク面とパッド面の距離を常に一定に保つ機構が 付いています。

張力でシリンダーにセットされているトラベルリングを支点としてパッドはバネにより戻されます。パッドが摩耗した場合にピストンはバネを圧縮し更にトラベルリングをディスクの方向へ押し出します。パッドがディスク面に当たった時点でトラベルリングは移動を終了して新たなバネの支点となります。

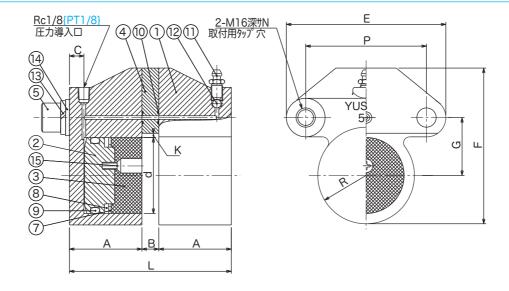

- ●油圧により作動する正作動ディスクブレーキです。
- ●小型・軽量で取り付けスペースをとりません。
- ●使用油量が少ないため立ち上がり時間が速く、高頻度に使用することができます。
- ●自動摩耗調整機構を備えているために、常に一定のストロークを保ち、無調整で使用できます(20型以上)。
- ●DBL-10型は内蔵の円錐バネの働きによりパッドを確実に動作開始地点へ引き戻します。
- ●片押しブレーキへの変更も可能です。

- ●ディスタントピースを交換することにより、ディスク厚を 任意に設定することができます(出荷時に設定)。
- ●圧力を変化させることにより、ブレーキ力は無段階に制御できます。
- ●既存の機械への取り付けが容易です。
- ●シールを交換することによりブレーキ液にも対応します。
- ●パッドはノンアスベスト系のレジンモールドを使用しています。
- ◆作動油は鉱物油を使用してください。
- ▲背圧のある場合、圧力に相当するブレーキ力が発生し、 パッドが戻りにくくなります。

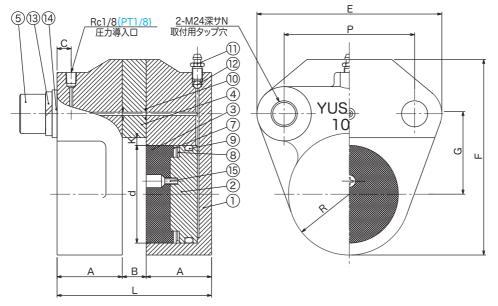
■DBL型 仕様・寸法表


型番	制動力 (at μ = 0.33) 6MPa {60kgf/cm²}時 kN {kgf}	ピストン 面 積 cm²	流体 体積 cm³		標準 ディスク厚 T mm	А	В	С	d	Е	F	G	取付けボルト	K	L	N	Р		本体構成 ボルト締 付トルク Nm {kgfm}	質 量
DBL-10	2.4 {240}	6.16	1.2		7	28	9.5	9.5	28	59	64.5	24	M8	3	65.5	14	41	21	25 {2.5}	0.4
DBL-20	5.4 {540}	13.85	2.8	6	9.5	36	12	11.5	42	79	91.5	33.5	M12	3	84	19	55	28.5	60 {6.0}	1.0
DBL-50	12.0 {1200}	31.17	6.3	{60}	12	60	14	12	63	132	130	48	M16	3.5	134	30	100	41	280 {28}	7.5
DBL-100	25.0 {2500}	63.62	12.7		20	60	22	13	90	172	180	74	M24	7	142	32	120	56	700 {70}	15.5

■DBL-10型



YUSHIN


■DBL-20型

■DBL-50型

■DBL-100型

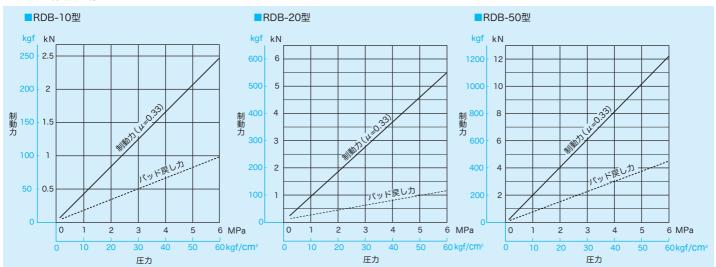
■DBL型 部品表

2 ピ ス ト ン 3 パ ッ ド	2 2 2
3 パッド	2
4	1
4 ディスタントピース	ı
5 六角穴付ボルト	2
7 トラベルリング	2
8 バ ネ	2
9 0 リング(大)	2
10 0 リング(小)	2
11 ブリードスクリュー	1
12 スチールボール	1
13 バ ネ 座 金	2
14 平 座 金	2
15 皿 小 ネ ジ	2

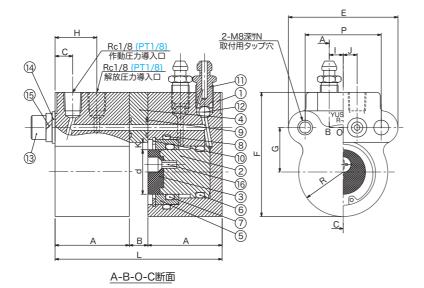
■RDB-10型

■RDB-20型

■RDB-50型

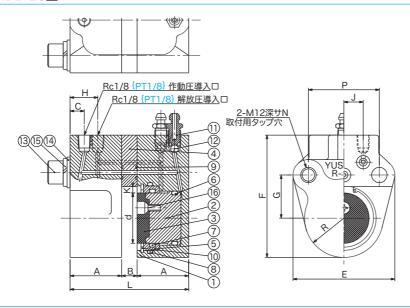

- ●作動・復帰ともに油圧を用いるディスクブレーキです。
- ●油圧により復帰しますので、確実に迅速な復帰を行うことができ、サイクルタイムを短くすることができます。
- ●圧力を変化させることにより、ブレーキ力を無段階に制御することができます。
- ●小型・軽量で取り付けスペースを取りません。
- ●片押しブレーキへの変更も可能です。
- ディスクとパッドのすき間は大きく設定でき、ストロークを大きくとることができます。

- ●ドレンなどの背圧の影響を受けません。
- ●ディスタントピースを変更することにより任意のディスク厚に対応できます(出荷時に設定)。
- ●既存の機械、装置への設置が容易です。
- ●標準品は鉱物油用ですが、シールの変更によりブレーキ液その他の油に対応可能です(出荷時に設定)。
- ●パッドはノンアスベスト系のレジンモールドを使用しています。
- ●空圧でのご使用も可能です。

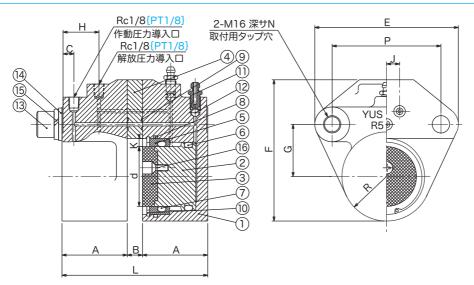

■RDB型 仕様・寸法表

	制動力 (at µ=0.33)	シリング	ブー面積	常用最	標準																	本体構成ポルト締	
型番	6MPa {60kgf/cm²}	作動	復帰	大圧力	ディスク厚 T	А	В	С	d	Е	F	G	Н	1	J	К		取付け ボルト	N	Р	R	付トルク	
	kN {kgf}	cm ²	cm ²	MPa {kgf/cm²}	mm																	Nm {kgfm}	kg
RDB-10	2.4 {240}	6.16	1.63		8	40	10	9.5	24	60	67	24	22.5	7.5	7.5	4	90	M8	23	41	24	25 {2.5}	0.75
RDB-20	5.4 {540}	13.85	1.90	6 {60}	10	40	12	11	39	82	95	35	21.5	_	15	5	92	M12	22	55	30.5	60 {6.0}	1.5
RDB-50	12.0 {1200}	31.17	7.41		12	60	14	11	55	134	130	48	34	_	12	7.5	134	M16	30	100	41	280 {28}	8.0

■圧力・制動力曲線



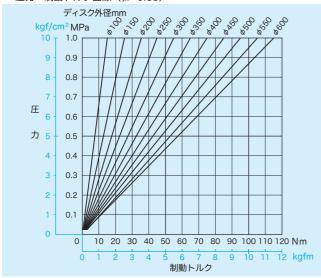
■RDB-10型



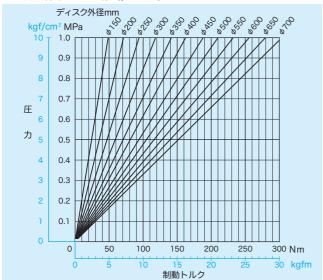
■RDB型	[⊍] パット	・ 寿命	×1	0°J{×10	O ⁷ kgfm}
型番	100°C	150°C	200°C	250°C	300°C
RDB-10	2.58	1.69	1.41	1.02	0.28
	{2.58}	{1.69}	{1.41}	{1.02}	{0.28}
RDB-20	7.85	5.13	4.30	3.10	0.85
	{7.85}	{5.13}	{4.30}	{3.10}	{0.85}
RDB-50	15.90	10.39	8.72	6.28	1.72
	{15.90}	{10.39}	{8.72}	{6.28}	{1.72}

■RDB-20型

■RDB-50型

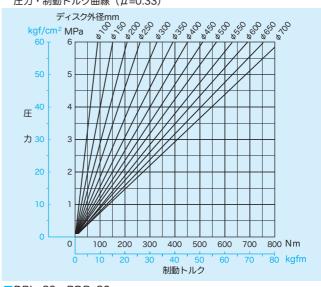


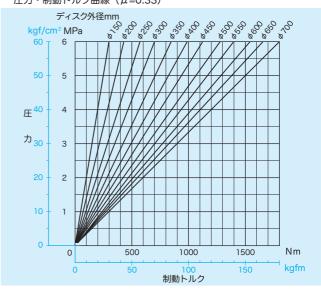
■RDB型 部品表


番ち		하	6 省		数重
1	シ	リ	ン	ダ	2
2	ピ	ス	-	ン	2
3	パ	Ž	y	ド	2
4	ディ	スタン	ノトピ	ース	1
5	シリ	ノンダ	キャ	ップ	2
6	0	リ	ン	グ	2
7	0	リ	ン	グ	2
8	0	リ	ン	グ	2
9	0	リ	ン	グ	4
10	止	b	b	輪	2
11	ブリ	リードス	スクリ	ュー	2
12	スラ	チー丿	レボ -	- ル	2
13	六角	9 穴 f	すボノ	レト	2
14	平	<u> </u>	堇	金	2
15	バ	ネ	座	金	2
16	Ш	小	ネ	ジ	2

- ▲油圧にて使用するディスクブレーキは、油の粘度により、 空圧使用時に比べパッドの戻り時間が長くなります。 速くするには、ブースター(増圧器)を併用するか、強 制的に油が戻るようにして下さい。
- ▲DBA-5、DBA-10、DBL-10型を除くディスクブレーキでは必ずディスク等を挟んで作動させて下さい。空打ちするとパッドの復帰ができなくなります。
- ▲DBO型はOリングの弾性でパッドの引き戻し、及びストローク調整をしています。空圧使用時、入力圧力が低くなると戻り量が減少してきます。
- ▲ブレーキ取り付け時及びパッド交換時には各々の仕様表中のボルト締付けトルクを参照して下さい。
- ▲DBA型、DBL型ではディスクのふれはストローク以内に して下さい。低圧の場合にはデッドロックの原因になり ます。ストローク以上になる場合にはDBO型ディスクブ レーキを選定しディスタントピースを厚くします。
- ▲油圧使用の場合、最大圧力を6MPa {60kgf/cm²} 以下 になるように設定して下さい。またエアー抜きはブリー ドスクリューを用いて完全に行ってください。

■DBA-10、DBL-10、RDB-10 圧力・制動トルク曲線(μ=0.33)

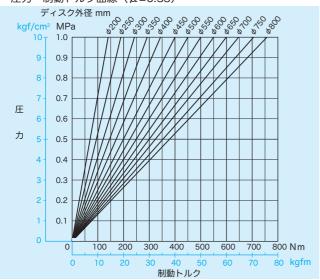

■DBA-20、DBL-20、RDB-20 圧力・制動トルク曲線(μ=0.33)


■機能比較表

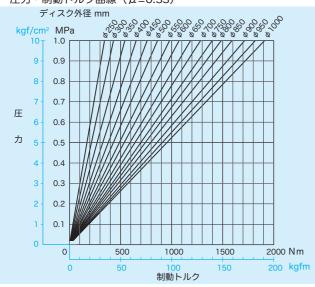
型番	作動源	常用最大圧力	標準 ディスク厚	パッド 引戻し	摩耗調整	
DBO- 5	空油圧 兼用	2MPa{20kgf/cm²}	3	Οリング	Οリング	
DBA- 5			3	円錐バネ	完全引戻し	
10			7	口班八个	元王引庆し	
20	空 圧	1 MPa {10kgf/cm²}	9.5			
50			12	波バネ	自動摩耗調整	
100			14			
DBL-10			7	円錐バネ	完全引戻し	
20	油圧		9.5			
50	(鉱物油)	0145	12	波バネ	自動摩耗調整	
100		6MPa {60kgf/cm²}	20			
RDB-10			8	油圧		
20	油 圧 (鉱物油)		10	又は空 圧	なし	
50	(35,13711)		12	生 庄		

■DBL-10、RDB-10 圧力・制動トルク曲線(μ=0.33)

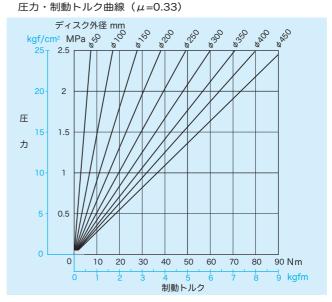
■DBL-20、RDB-20 圧力・制動トルク曲線(μ=0.33)

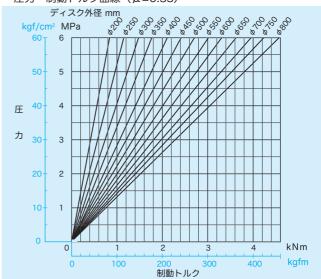


DRU DRY	DRI 型パッドの寿命 (全仕事量)	108 IS107kafml
DBU DBA		\times 10°.11×10′K0TM}

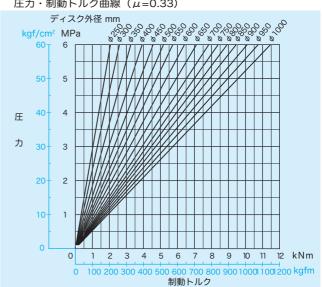

型番	100°C	150°C	200°C	250°C
5	0.5	0.4	0.2	0.1
	{0.5}	{0.4}	{0.2}	{0.1}
10	4.3	3.2	2.0	1.1
	{4.3}	{3.2}	{2.0}	{1.1}
20	11.5	8.3	5.2	2.9
	{11.5}	{8.3}	{5.2}	{2.9}
50	56.3	40.7	25.5	14.1
	{56.3}	{40.7}	{25.5}	{14.1}
100	171.1	84.9	53.0	29.4
	{171.1}	{84.9}	{53.0}	{29.4}

寿命計算は×70%で行うと安全です。


■DBA-50, DBL-50, RDB-50 圧力・制動トルク曲線(μ=0.33)


■DBA-100, DBL-100 圧力・制動トルク曲線 (μ=0.33)

■DBO-5, DBA-5



■DBL-50, RDB-50 圧力・制動トルク曲線(μ=0.33)

■DBL-100

圧力・制動トルク曲線 (μ=0.33)

■NDB-10A型

■NDB-20A型

- ●空圧によりブレーキを解放し、空圧を切った時にコイルバネでブレーキする逆作動型のディスクブレーキです。
- 小型・軽量で取り付けが簡単です。
- ●空圧源が切れた時の非常停止用として最適です。
- ●ブレーキを解放している時間よりブレーキしている時間の 長い保持用あるいはパーキング用として最適です。
- ●使用空気量が少ないため応答性が良く、コイルバネで作動 するため確実かつ迅速にブレーキします。
- ●パッドがピストンに固定されているため、ブレーキ解放時にパッドとディスクとの接触がありません。
- ●ディスク厚を変えることによりブレーキ力が任意に設定でき、またディスタントピースの厚さの変更も可能です。
- ポートが2か所ありますので使い易い方どちらでも使用できます。
- ●付属のボルトにより手動解放も出来ます。
- ●片押しブレーキへの変更も可能です。

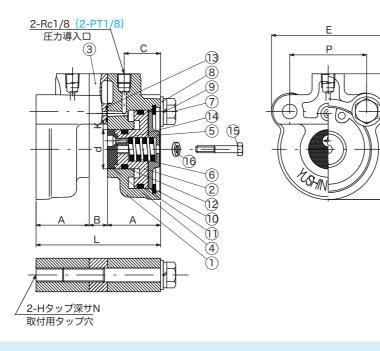
■使用上の注意

- ●パッドを交換する時は、左右のシリンダーとディスタントピースを組立てている六角ボルトをはずし、パッドの皿小ネジをはずして行って下さい。パッド交換後の組立時には、ディスタントピースにはめてあるOリングが脱落したり、傷つけたりしないよう注意して下さい。ボルトの締め付けトルクは仕様表の数値を参照して下さい。
- ●パッドはノンアスベスト系のレジンモールドの他、耐熱・耐摩耗用、保持専用で力の大きなコルク系も用意されています。コルク系の場合保持力は30~40%上昇します。
- ◆1回のブレーキ仕事が大きく頻度が多い場合にはパッドの摩 耗が速く、ブレーキ力が急速に減少します。
- ▲手動解放の時は必ず付属のボルトとワッシャーを使用してください。ボルトの長さや付属のワッシャーの厚みが違う場合にはパッドを破損する原因となります。
- ◆取り付け後、付属の手動解放ボルトとワッシャーは抜き取って下さい。

■NDB-A型 仕様・寸法表

型番	制動力 (at μ = 0.35) N {kgf}	解放最低圧力 MPa {kgf/cm²}	常用最大圧力 MPa {kgf/cm²}	ディスク厚 T	А	В	С	d	Е	F	G	H 取付け ボルト	K	L	N	Р	R	本体構成ボルト 締付トルク Nm {kgfm}	手動解放 ボルト	質 量 kg
NDB-10A	T=4.4の時 200 {20}	0.4	1	4.4	30	5	20	16	51	55	16	М6	2	65	14	36	23	6 {0.6}	M4×25 スペーサー	0.4
NDB-20A	T=12の時 450 {45}	{4}	{10}	12	38	13	26	28	81	90	27	M10	4	89	19	55	36	20 {2}	M5×30 スペーサー	1.0

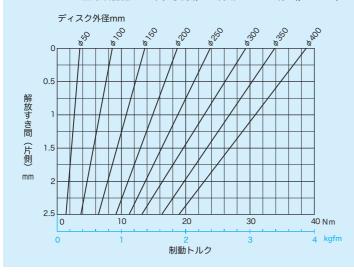
■パッドの寿命(全仕事量)


 $\times 10^7 J \{\times 10^6 \text{kgfm}\}$

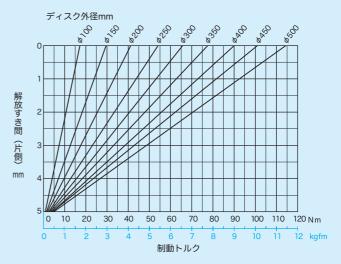
	·—·		
型番		パッド温度	
22 亩	100°C	200°C	250°C
NDB-10A	5.8 {5.8}	3.0 {3.0}	1.8 {1.8}
NDB-20A	24.4 {24.4}	12.2 {12.2}	7.8 {7.8}

■パッドが1mm摩耗するまでの寿命(仕事量) ×10⁷J {×10⁶kgfm}

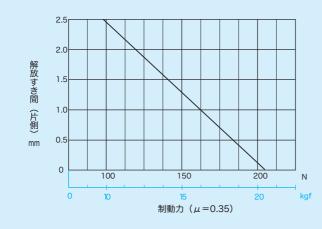
型 番	パッド温度					
空 雷	100°C	200°C	250°C			
NDB-10A	NDB-10A 2.4 {2.4} 1.2		0.8 {0.8}			
NDB-20A	7.0 {7.0}	3.4 {3.4}	2.2 {2.2}			


■NDB-A型

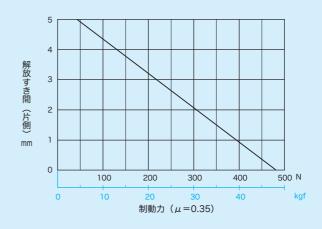
■NDB-A型 部品表


番号		部	品	名		数量
1	シ	リ	ン	ダ	_	2
2	ピ	ス		 	ン	2
3	デ	ィスタ	フン	トピ	ース	1
4	パ		ッ		ド	2
5	バ		ネ		座	2
6	バ				ネ	2
7	六	角	ボ	ル	-	2
8	平		座		金	2
9	バ	ネ		座	金	2
10	止		め		輪	2
11	0	リ	ン	グ	(大)	2
12	0	リ	ン	グ	(中)	2
13	0	リ	ン	グ	(기/)	2
14	Ш	小		ネ	ジ	2
15	手	動解	放	ボノ	しト	2
16	ス	ペ	_	サ	_	2

■NDB-10A型 初期解放すき間 (片側) ・制動トルク曲線 (μ=0.35)



■NDB-20A型 初期解放すき間(片側)・制動トルク曲線(μ=0.35)


ഗ

■NDB-10A型 初期解放すき間(片側)・制動力曲線(μ=0.35)

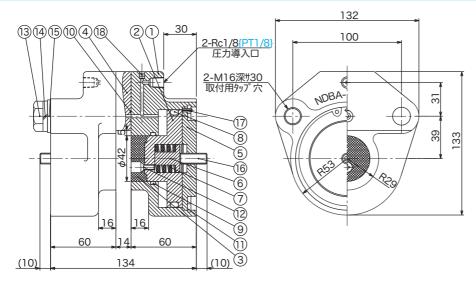
■NDB-20A型 初期解放すき間(片側)・制動力曲線(μ=0.35)

■NDBA-50型

- ●バネにより作動し、空圧により解放する逆作動型のディス クブレーキです。停止している時間の長い場合や安全用途 に最適です。
- ■調整機構を備えているために制動力・保持力・解放すき間の設定が容易にできます。
- ●制動力・保持力・解放すき間の調整、手動解放はシリン ダー両側の調整ネジにより行います。
- ●バネ作動であり、かつ使用空気量が少ないために迅速に作動し、高頻度の使用にも耐えます。
- ●パッドがピストンに固定されているために解放時にパッド とディスクの接触がありません。
- ●ディスタントピースの交換により大幅なディスク厚の変更にもお応えできます。
- ●片押しブレーキへの変更も可能です。

- ●ポートは2か所あり、使いやすい方または両側同時に使用できます。
- ●標準品はノンアスベストのパッドを使用しています。保持で力の強いコルク系や耐熱・耐摩耗用のパッドも用意されています。
- ●DBA-50・DBL-50型とは取り付けの完全互換が保たれています。
- ■使用上の注意
- ▲バネ作動のためパッドの摩耗に従い制動力が低下してきます。制動用として用いる場合は定期的に調整して下さい。
- ◆パッドやOリングの交換時以外は本体構成ボルトを緩めないで下さい。解放不良の原因となります。
- ☆保持として用いる場合にはパッドとディスクとの馴染みが取れないために仕様の制動力の60%程度の力で計算して下さい。

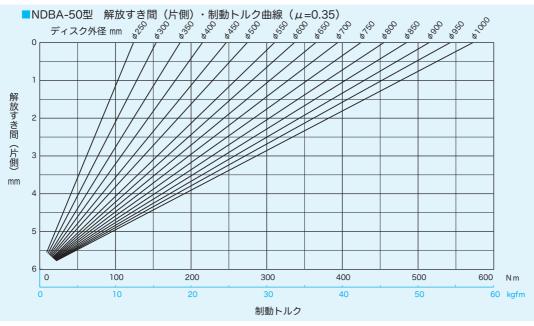
■仕 様

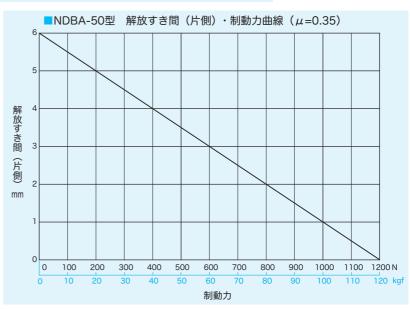

制動力(at μ = 0.33)	0.1~1kN {10~100kgf}		
解放すき間(片側)	1.0mm (調整可)		
最低解放圧力	0.4MPa {4kgf/cm²}		
常用最大圧力	1.0MPa {10kgf/cm²}		
標準ディスク厚	12mm		
質 量	7.5kg		

■パッドの寿命

 $\times 10^8 J \{\times 10^7 kgfm\}$

	100°C	150°C	200°C	250°C
1mm摩耗するまでの寿命	1.5	1	0.7	0.4
	{1.5}	{1.0}	{0.7}	{0.4}
全寿命	7.2	5.2	3.3	1.8
	{7.2}	{5.2}	{3.3}	{1.8}


■NDBA-50型



■部品表

番号	部品	名	数量
1	シリン	ダ ー	2
2	ピスト	、 ン	2
3	パ ッ	ド	2
4	ディスタント	・ピース	1
5	バネ	座	2
6	押し	板	2
7	バ	ネ	2
8	0 リン	グ (大)	2
9	0 リン	グ (中)	2
10	0 リン	グ (小)	2
11	C形止	め輪	2
12	皿 小 右	ネ ジ	2
13	六 角 ボ	ルト	2
14	バ ネ 🛭	至 金	2
15	平 座	金	2
16	調整	ネ ジ	2
17	スプリンク	ブピン	2
18	プ ラ	グ	2

ブレーキ解放状態を示す

■NDB-1400型

- ●油圧によりブレーキを解放し、油圧を切った時に皿バネでブレーキする逆作動形のディスクブレーキです。
- ●皿バネを利用しているため大きな力を発揮する割に小形、軽量です。
- ●取り付けが簡単です。
- ●油圧源が切れた時の非常停止用として最適です。
- ●ブレーキを解放している時間よりブレーキしている時の長い 保持用あるいはパーキング用として最適です。
- ■皿バネの組合せ方の変更や、プッシュロッドの調整でブレーキ力が任意に設定できます。
- ●油圧源がない場合でも、ブースター(増圧器)を利用することにより空圧でも使用できます。

■使用上の注意

- ◆1回のブレーキ仕事が大きく頻度が多い場合にはパッドの摩 耗が早くブレーキ力が急速に減少しますので定期的に調整し て下さい。
- ♠解放油圧は14MPa {140kgf/cm²} 以下で使用して下さい。
- ▲最低解放油圧は各タイプにより異なりますので注意して下さい。
- ○作動油は鉱物性の油を使用して下さい。
- ▲1400型には常にディスクを挟んでご使用下さい。フリーの場合にはパッドが脱落することがあります。
- ●プッシュロッドの調整によりストローク、制動力は可変です。

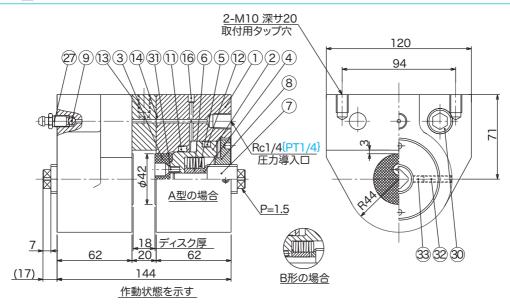
■NDB型 仕様表

型番	制動力 (at <i>μ</i> =0.33) kN {kgf}	解放すき間(片側) mm	最低解放圧力 MPa {kgf/cm²}	許容最高圧力 MPa {kgf/cm²}	油 量 cm³	質 量 kg
NDB-400A	2 {200}	1.6*	3.7 {37}	14 {140}	11.0	8
NDB-400B	4 {400}	1.0	7.7 {77}	14 {140}	7.4	8
NDB-1400A	7 {700}	2.4	6.5 {65}	14 {140}	31.0	9.5
NDB-1400B	14 {1400}	1.2	13.0 {130}	14 {140}	16.0	9.5

形番末のA・Bはバネの並びの違いを示します。 *初期は設定できません。

最低解放圧力は、圧力によりパッドの解放が終了する圧力です。

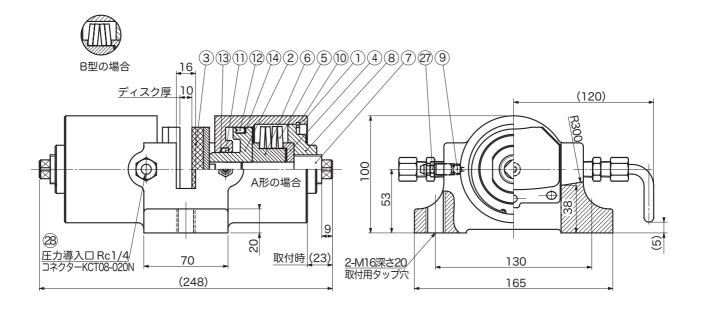
■パッドの寿命 (全仕事量)


×10 ⁸ J	$\times 10^{7}$	kgfm

	(エロヂ里/	^	103 (x10 kgiiii)
型番			
22 亩	100°C	200°C	250°C
NDB-400	14 {14}	7 {7}	5 {5}
NDB-1400	49 {49}	46 {46}	38 {38}

パッドが 7	mm摩耗するまでの寿命	(什重量)	1081	10^{7} kafm	ι
ノハットかり	川川崖林りるまじの井山	(1T =1 里)	×IUJ	× IU' KATM	ł

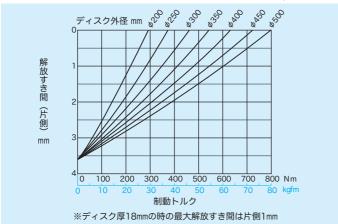
型番	パッド温度					
五里	100°C	200°C	250°C			
NDB-400	2 {2}	1 {1}	0.7 {0.7}			
NDB-1400	7 {7}	6.6 {6.6}	5.4 {5.4}			


■NDB-400型

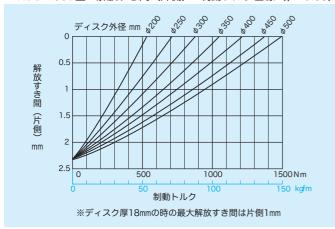
■NDB-400型 部品表

番号	部 品 名	数量	番号	部 品 名	数量	番号	部 品 名	数量	番号	部 品 名	数量
1	シリンダー	2	5	皿 バ ネ(B形)	16	11	パッキン (小)	2	27	ブリードスクリュー	1
2	ピストン	2	6	ガイドブッシュ	2	12	パッキン (大)	2	30	ボールト	2
3	パッド	2	7	プッシュロッド	2	13	ディスタントピース	1	31	皿 小 ネ ジ	2
4	オシイタ	2	8	ウケイタ	2	14	Οリング	2	32	オ シ ネ ジ	2
5	皿 バ ネ (A形)	12	9	スチールボール	1	16	Tシールプラグ	2	33	キーロッド	2

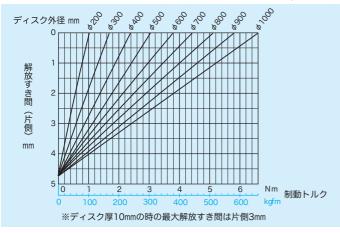
■NDB-1400型

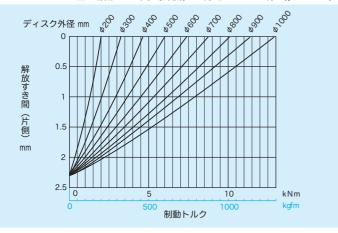


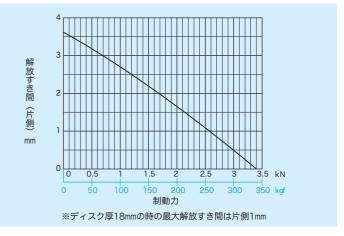
■NDB-1400型 部品表

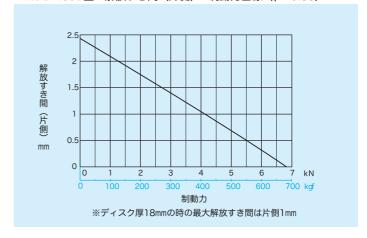

番号	部 品 名	数量	番号	部 品 名	数量	番号	部 品 名	数量	番号	部 品 名	数量
1	シリンダー	2	5	バネ	8	9	スチールボール	1	13	バックアップリング (小)	2
2	ピストン	2	6	ガイドブッシュ	2	10	止 め 輪	2	14	バックアップリング(大)	2
3	パッド	2	7	プッシュロッド	2	11	パッキン (小)	2	27	ブリードスクリュー	1
4	オシイタ	2	8	ウケイタ	2	12	パッキン (大)	2	28	コネクター	3

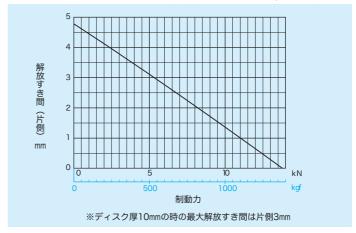
31

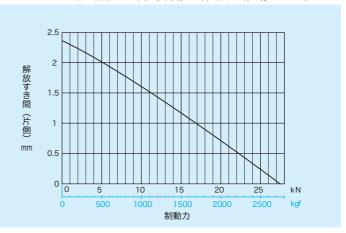

■NDB-400A型 解放すき間(片側)・制動トルク曲線(μ=0.33)

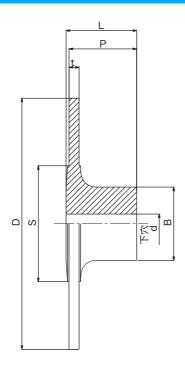

■NDB-400B型 解放すき間(片側)・制動トルク曲線(μ=0.33)

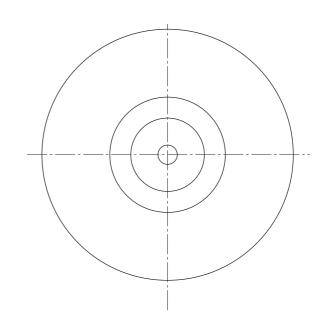

■NDB-1400A型 解放すき間(片側)・制動トルク曲線(μ=0.33)


■NDB-1400B型 解放すき間(片側)・制動トルク曲線(μ=0.33)


■NDB-400A型 解放すき間 (片側)・制動力曲線 (μ=0.33)


■NDB-400B型 解放すき間(片側)・制動力曲線(μ=0.33)




■NDB-1400A型 解放すき間(片側)・制動力曲線(μ=0.33)

■NDB-1400B型 解放すき間(片側)・制動力曲線(μ=0.33)



●許容エネルギー

各ディスクの許容エネルギーは右のグラフを参 照して下さい。

各ラインの下側に入るように設定して下さい。 グラフにないディスクは推定して下さい。 外径が大きくなるほど、また厚さが厚くなるほ ど許容エネルギーは増加します。

型番	D	t	В	d	L	Р	S
DP-150-060S	150	6	48	10	30	25	66
DP-200-060S	200	6	50	12	35	30	116
DP-260-104Y	260	10.4	90	0	80	80	-
DP-260-160Y	260	16	90	0	80	80	-
DP-260-104D	260	10.4	100	20	70	68	120
DP-300-104Y	300	10.4	110	0	110	110	-
DP-300-160Y	300	16	110	0	110	110	-
DP-350-104D	350	10.4	100	30	110	100	210
DP-350-200D	350	20	115	30	120	110	210
DP-500-200D	500	20	150	35	140	130	360

強制冷却用のベンチレイト型、水冷型の必要な場合にはお問合せ下さい。

本ディスクをご使用の時はディスクブレーキ をディスク厚に合わせて出荷することも可能 です。

■BO-10型

■BO-20型

- ●空気圧を作動源として高油圧を発生させる装置です。
- ●空気圧を調整することにより低圧から高圧まで無段階に油圧を変化させることができます。
- ●油圧ポンプと異なり油温の上昇がないために安定した油圧を 得ることができます。
- ●エアーシリンダ用パッキンは抵抗の少ない無給油タイプを使用しているため給油の必要はありません。また長期にわたりメンテナンスが不要です。

●エアーシリンダ用パッキンは抵抗の少ない無給油タイプを使用しているため給油の必要はありません。また長期にわたりメンテナンスが不要です。

■仕 様

型番	増圧比	吐出量	有効タンク容量	質 量
BO-10	11:1	10 cm ³	40 cm ³	3.7kg
BO-20A	12:1	25 cm ³	100 cm ³	8.1kg
BO-20B	20:1	17 cm ³	100 cm ³	8.1kg

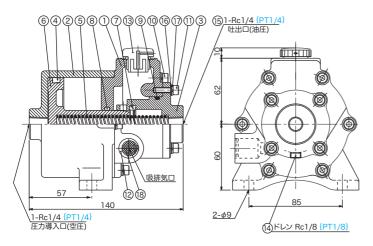
■ブースター容量適用表

BO-	1	(
-----	---	---

DBO-10	×7
DBL-10	×5
DBO-20	×3
DBL-20	×2
DBO-50	×1
DBL-50	×1
BO-20B	
NDB-400 B	×1
NDB-1400B	×1

BO-20A

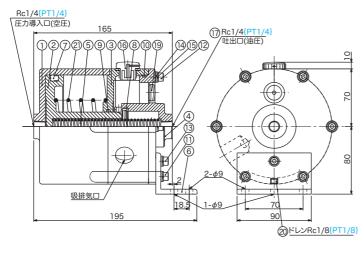
DBO-10	×18
DBL-10	×12
DBO-20	×7
DBL-20	×5
DBO-50	×3
DBL-50	×2
DBL-100	×1
NDB-400 A	×1
NDB-1400 A	×1


上記の表は一応の目安です。配管ホースの長さや材質により使用 可能台数は増減します。

■使用上の注意

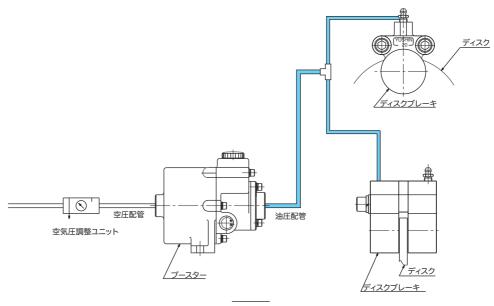
- △作動油は鉱物油を使用して下さい。
- ▲ブースターの取り付け位置がブレーキより上の場合にはエアー抜きは自然に行なわれます。取り付け位置がブレーキより下の場合はブレーキ側にてエアー抜きを行って下さい。
- ▲エアー抜きの際はタンク内の油がなくならない様に補充して下さい。エアーが混入します。
- ▲ピストン復帰は、内蔵のコイルバネにて行っているため、電磁弁を用いる場合には3ポートのものを用意して下さい。
- ↑ブースターは水平に取り付けるようにして下さい。
- ▲タンク内の油は入れ過ぎないようにして下さい。作動時の液面の上昇により油が吹き出します。
- ▲ブースターとアクチュエータの落差が大きいと、ピストンが もどらなかったり、油の流れ込みの発生する場合があります。
- ▲BO型ブースターは鉱物油仕様のみです。ブレーキ液用はありません。

YUSHIN


■BO-10型

■BO-10型 部品表

番号	部品名	数量	番号	部品名	数量
1	ハウジング	1	10	六角穴付ボルト	2
2	エアーシリンダー	1	11	六角穴付ボルト	8
3	オイルシリンダー	1	12	止 め 輪	1
4	シ ー ル	1	13	オイルキャップ	1
5	バネ	1	14	プ ラ グ	1
6	ピストン	1	15	プ ラ グ	2
7	シ ー ル	1	16	平 座 金	10
8	0 リ ン グ	1	17	バ ネ 座 金	10
9	0 リ ン グ	1	18	フィルター	1


■BO-20型

■BO-20型 部品表

番号	部 品 名	数量	番号	部品名	数量
1	エアーシリンダー	1	12	六角穴付ボルト	4
2	ピストン	1	13	六角穴付ボルト	1
3	オイルタンク	1	14	平 座 金	7
4	オイルシリンダー	1	15	バ ネ 座 金	7
5	バ ネ 1	1	16	オイルキャップ	1
6	スタンド	1	17	プ ラ グ	2
7	シ ー ル	1	18	止 め 輪	1
8	シ ー ル	1	19	オイルゲージ	1
9	0 リ ン グ	1	20	プ ラ グ	1
10	0 リ ン グ	1	21	バ ネ 2	1
11	六角穴付ボルト	2	22	フィルター	1

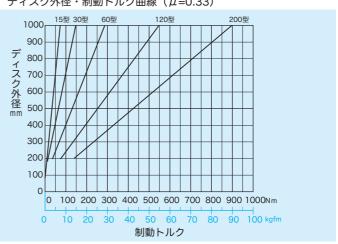
■使用例

- ●通電時に作動し、電流を切ったときに解放するブレーキです。
- ●電磁の吸着力を利用したブレーキであるため非常にコンパクトです。
- ●無調整式であるため調整の煩わしさがありません。
- ●電圧を変化させることにより制動力、保持力を制御することができます。(電圧と制動力、保持力とは比例しません。)
- ●200型以外はノンアスベスト系パッドを使用しています。
- ▲構造上、磁気が残留し易いため、速やかな解放が必要な場合には46頁のデガウスの並用をご検討下さい。

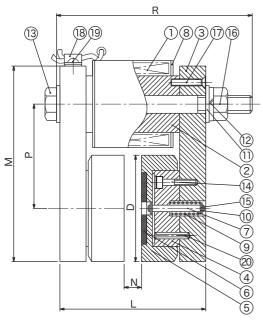
■GDN型 仕様・寸法表

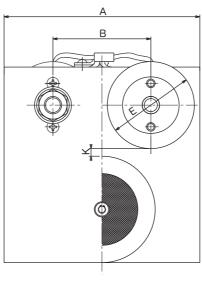
型番	制動力 (at <i>μ</i> =0.33) N[kgf]	電圧 DCV	入力 W	時定数 ms {msec}	時間定格	А	В	D	Е	К	L	М	N	Р	取付け ボルト	R	質量 kg
GDN-15	150 {15}	24	7	60	連続	65	35	32	30	3	48	65	4	34	M6	70	1.1
GDN-30	300 {30}	24	11	140	連続	90	45	49	40	3	67	90	6	48	M8	90	2.5
GDN-60	600 {60}	24	20	170	連続	100	55	64	50	3	79	112	8	60	M10	110	5
GDN-120	1200 {120}	24	26	260	連続	130	70	84	61	5	110	150	12	78	M16	150	11
GDN-200	2000 {200}	24	48	600	連続	162	78	74	74	4	114	150	13	78	M20	160	15

200型はアーマチュアが2組並列のモデルになっています。


■パッドの寿命(全仕事量)

 $\times 10^8 J \left\{ \times 10^7 kgfm \right\}$


温度型番	100°C	150°C	200°C	250°C
GDN-15	1.1	0.8	0.6	0.4
	{1.1}	{0.8}	{0.6}	{0.4}
GDN-30	3.2	2.2	1.6	1.1
	{3.2}	{2.2}	{1.6}	{1.1}
GDN-60	6.1	4.2	3.3	2.0
	{6.1}	{4.2}	{3.3}	{2.0}
GDN-120	12.2	8.5	6.1	4.1
	{12.2}	{8.5}	{6.1}	{4.1}
GDN-200	16.6	11.5	8.3	5.5
	{16.6}	{11.5}	{8.3}	{5.5}


注) 初期ストローク、片側0.5mmのときの寿命

■GDN型 ディスク外径・制動トルク曲線 (µ=0.33)

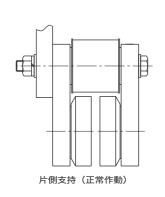
■GDN型

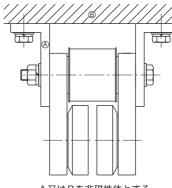
■部品表

		1
番号	部品名	数量
1	コイル	2
2	鉄 芯	2
3	ステータ	2
4	ステータボス	2
5	ステータボス	2
6	パッド	2
7	パッド	2
8	フランジ	4
9	バネ	2
10	平 座 金	4
11	平 座 金	4
12	バ ネ 座 金	2
13	六角ボルト	2
14	六角穴付ボルト	4
15	E型止め輪	4
16	六角ナット	2
17	皿 小 ネ ジ	8
18	皿 小 ネ ジ ク ラ ン プ	1
19	リベット	1
20	スプリングピン	4

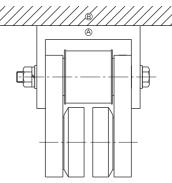
■取り付け上の注意

△ディスクは必ず磁性体を使用してください。非磁性体を用い ますとブレーキ力を発揮できません。

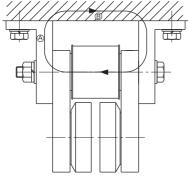

△ディスクはアーマチュアの全面にかかるようにして下さい。

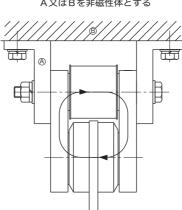

▲DC24V以上の電圧で使用する場合には連続使用はさけ、間 欠使用して下さい。コイル焼付きの原因になります。

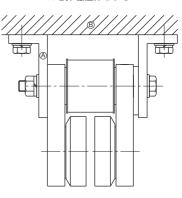
△取り付けは片支持又は磁気絶縁された両支持で行なって下さ い。 (下図参照)


△ディスクにメッキの必要がある場合には亜鉛系のメッキを 10~20µmかけて下さい。クローム系の様な摩擦係数の低 いものを使用すると適正な制動力が得にくくなります。ディ スクの硬度はHRc32~36程度が最適です。又表面粗度は 3S~6Sが最適です。

▲ディスクとアーマチュアのクリアランスは片側0.5mm程度と して下さい。極端に広い場合には作動不良やパッド寿命短縮 の原因となります。



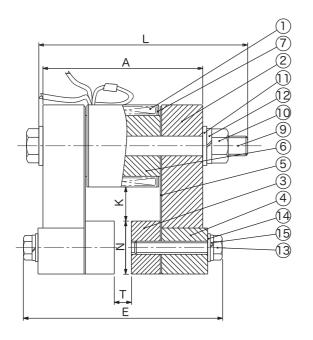

A又はBを非磁性体とする

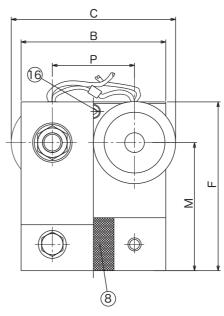

Aを非磁性体とする

A、B共に磁性体の場合には磁束 が短絡し、制動力が出ない

A又はBを非磁性体とした場合に は絶縁され制動力が出る

A、B共に磁性体の場合、非磁性体 のワッシャーを片側にはさみ込む




- ●直列に並んだ2つのコイルにより発生する磁束をシューに挟まれたディスクを通じて流すことにより保持力を得る、電磁式のクランプです。
- ●可動部は板バネにより保持されているためディスクの回転方 向や物体の移動方向にはバックラッシュがありません。
- ●従来のクラッチ・ブレーキと作動原理が異なり、かつ構造が 簡単なために小形で大きな力を発揮します。
- ●使用頻度が少なければ小型電磁ブレーキとして使用できます。
- ●ブレーキ仕事で摩耗したシューは交換可能です。 (クランプ として使用する場合にはシューの摩耗はありません。)
- ●ディスク厚は変更可能です。御注文時に明示してください。
- ◆電圧を変化させることによりクランプ力を制御することができます。直流24V以上で使用する場合には連続の使用をせずに間欠使用して下さい。コイル焼付きの原因となります。
- ▲構造上、磁気が残留し易いため、速やかな解放が必要な場合には、46頁のデガウスの併用をご検討下さい。

■MDB型 仕様・寸法表

型番	電圧 DCV	入力 W	保持力 (at μ=0.28) N{kgf}	時定数 ms {msec}	А	В	С	Е	F	取付け ボルト	K	L	М	N	Ρ	T	質量 kg
MDB-3	24	7	130 {13}	60	50	48	60	63	51	M6	10	70	37.5	12	30	3.4	0.7
MDB-8	24	11	280 {28}	140	63	70	80	86	80	M8	20	90	59	19	40	6.4	2.0
MDB- 26	24	34	750 {75}	230	97	88	100	121	103	M12	20	130	78	32	50	10.4	5.9

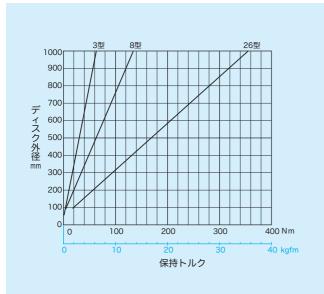
■MDB型

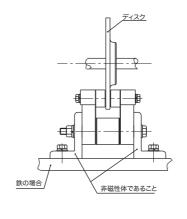
M	DB型	自	品表	툿		
番号	部		8		名	数量
1			1		ル	2
2	ス	テ	_	タ	_	2
3	シ		ュ		_	2
4	ア		マチ		ア	2
5	板		バ		ネ	2
6	鉄				芯	2
7	ツノ	" (フラ	ラン	ジ)	4
8	ラ	1	=	ン	グ	2
9	六	角	ボ	ル	-	2
10	六	角	ナ	ッ	-	2
11	平		座		金	2
12	バ	ネ	:]	座	金	4
13	六	角	ボ	ル	1	2
14	平		座		金	4
15	バ	ネ	:]	座	金	4
16	ナ	ベ	小	ネ	ジ	2

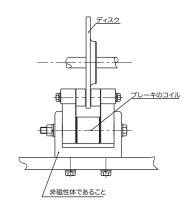
■ディスク (保持物)

▲ディスクの材質は必ず鉄を用いて下さい。鉄以外の材質ですと保持力は発生しません。

▲ディスクの防錆のためにメッキが必要な場合には亜鉛系のメッキを10~20μmかけて下さい。クローム系の様な摩擦係数の低いものを使用すると適正な保持力が出にくくなります。ディスクの硬度はHRc32~36程度が最適です。


■取り扱い上の注意


▲ディスクとシューの間の隙間は通常片側0.2~0.5mm程度に します。


▲本体と鉄のフレームに下図の様に両支持で取り付ける場合には、本体に接する場所はアルミやステンレスのような非磁性体を用いて下さい。鉄の場合、磁気回路が短絡し保持力の大幅低下となります。片支持の場合には鉄でかまいません。

△リード線は丁寧に扱って下さい。

■MDB型 ディスク外径・保持トルク曲線(*μ*=0.28)

■PGDB-50型

■PGDB-50S型

- ●コイルに直流電流を流すことにより作動する電磁ディスクブレーキです。
- 通電中でも電圧を変化させることにより制動力を変化させることができます。(別表参照)
- ●ディスクの材質は問いませんが、表面粗度は3S~6S程度になる様にして下さい。ディスク面にメッキする場合にはメッキの種類によっては摩擦係数の低下により表示の制動力の出ない場合があります。
- ●一回の調整での仕事量は別表にあります。制動力が低下したときが調整時期です。ヨークを時計方向に回し調整して下さい。
- ●解放時にパッドとディスクの間に確実にギャップをもたせる特殊型もあります。
- ●鉄以外のディスクを用いる場合や頻度の少ない仕事やクランプに適します。頻度の高い場合には無調整型のGDN型をご検討下さい。

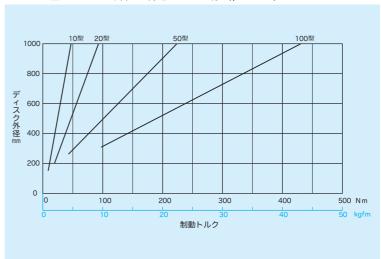
■PGDB型 仕様・寸法表

型番	制動力 (at μ=0.33) N{kgf}	電圧 DCV	入力 W	時定数 ms {msec}	時間定格	А	В	С	D	E	F	ストローク G	Н	-	J	K	L	N	Р	ディスク厚 T	質量 kg
PGDB-10	100 {10}	24	21	30	連続	67	8	8	48	96	76	0.25	37	5	9	5	109	70	53	4	1.9
PGDB-20	200 {20}	24	20	60	連続	83	10	10	60	114	94	0.35	45	12	9	5	142	100	82	9	3.5
PGDB-50	500 {50}	24	34	130	連続	120	13	13	88	160	135	0.40	65	15	11	8	178	125	100	12	8.8
PGDB-100	1000 {100}	24	44	210	連続	146	15	15	111	195	165	0.45	80	18	13	9	209	148	118	15	15.7

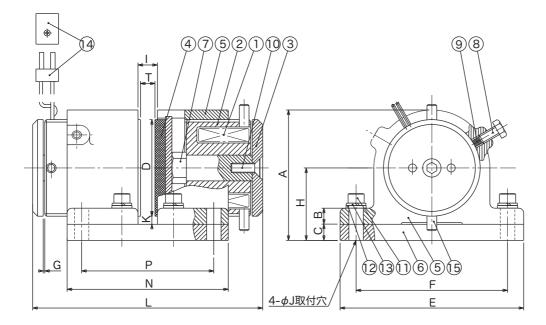
■パッドの寿命(仕事量)

 $\times 10^8 J \left\{ \times 10^7 \text{kgfm} \right\}$

		次回調整までの寿命※2													
温度※1型番	10	0°C	15	50°C	20	00°C	25	0°C							
PGDB-10	0.16	{0.16}	0.10	{0.10}	0.08	{0.08}	0.05	{0.05}							
PGDB-20	0.71	{0.71}	0.43	{0.43}	0.35	{0.35}	0.23	{0.23}							
PGDB-50	2.26	{2.26}	1.39	{1.39}	1.13	{1.13}	0.72	{0.72}							
PGDB-100	4.23	{4.23}	2.60	{2.60}	2.12	{2.12}	1.35	{1.35}							


■パッドの全寿命(仕事量)

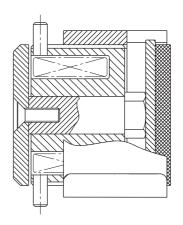
 $\times 10^8 J \left\{ \times 10^7 \text{kgfm} \right\}$


温度*1	100°C	150°C	200°C	250°C
PGDB-10	7.5 {7.5}	4.6 {4.6}	3.8 {3.8}	2.4 {2.4}
PGDB-20	23.0 {23.0}	14.1 {14.1}	11.5 {11.5}	7.4 {7.4}
PGDB-50	71.4 {71.4}	43.9 {43.9}	35.7 {35.7}	22.9 {22.9}
PGDB-100	139.1{139.1}	85.6 {85.6}	69.6 {69.6}	44.5 {44.5}

※1 温度はパッドの表面温度 ※2 初期ギャップ、O.1mmとした時

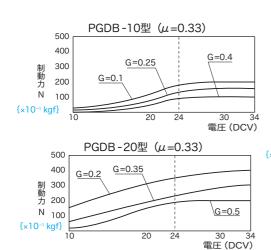
■PGDB型 ディスク外径・制動トルク曲線 (μ=0.33)

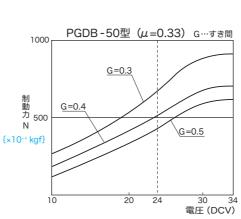
PGDB型

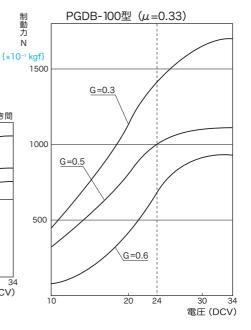


■PGDB型 部品表

番号	部	8	名	数量
1		イ	ル	2
2	3	_	ク	2
3	ア -	- マチ	ュア	2
4	パ	ツ	ド	2
5	サ	ポー	\	2
6	基	礎	台	1
7	プッ	シュロ	ッド	2
8	o 9	止めボ	ルト	2
9	_ \ <u>'</u>	ックロ	ッド	2
10	六角	穴付皿が	ボルト	2
11	六 角	穴付ボ	ルト	4
12	平	座	金	4
13	バ	ネ座	金	4
14		ネクタ	7 —	2
15	平	行ピ	ン	4


■PGDB型(シングル)


PGDB型は片押し型のブレーキを2台向かい合せたものです。 そのため片側のみを単独で使用することができます。取り付け スペースのない時などは、ディスクの片面側に単数又は複数台 を並べて使用することもできます。片押しの場合には型番のう しろにSを付けてください。(例: PGDB-10S)



■PGDB型・性能曲線

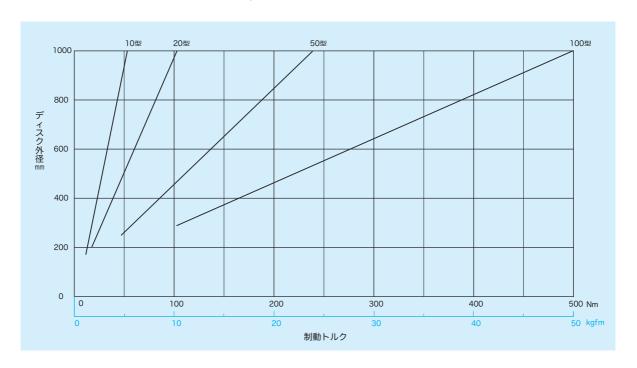
- ●PGDB型ディスクブレーキは電圧を上げることにより制動力・保持力が増大します。
- ▲エアーギャップが小さくなるにしたがって、制動力・保持力が増大します。
- ◆PGDB型ディスクブレーキは直流24V時に連続仕様になって います。直流24V以上で使用する場合には、間欠使用して下 さい。コイル焼付きの原因になります。

■NGDB-50S型

- ■スプリングで作動し、直流電流で解放する電磁ディスクブレーキです。
- ●停電時の安全用途や保持している時間の長い場合に適します。
- ●小型・軽量で取り付けスペースをとりません。
- ♪パッドが摩耗するとコイルはアーマチュアを吸引しなくなります。この時にはヨークを回し調整を行います。1回の調整で吸引し得る仕事量は別表を参照下さい。
- ◆出荷時は手動解放ナットによりギャップ零になっています。 取り付け終了後は手動解放ナットをゆるめて下さい。
- ▲初期のディスクとパッドとのすき間は0.1mm程度にとるようにします。大きすぎると次の調整までの寿命が短くなります。
- ▲頻度の少ない仕事及び保持に適します。ウインチ、クレーン などの高頻度、高荷重の場合には44頁のNGB型ディスクブ レーキをご検討下さい。

■NGDB型 仕様・寸法表

型番	制動力 (at μ =0.33) N{kgf}	電圧 DCV	入力 W	時定数 ms {msec}	時間定格	А	В	С	D	E	F	ストローク G (max)	Н	_	J	К	L	N	Р	ディスク厚 T	質量 kg
NGDB-10	100 {10}	24	21	30	連続	67	8	8	48	96	76	0.25	37	5	9	5	125	70	53	4	1.9
NGDB-20	200 {20}	24	20	60	連続	83	10	10	60	114	94	0.35	45	12	9	5	151	100	82	9	3.5
NGDB-50	500 {50}	24	34	130	連続	120	13	13	88	160	135	0.40	65	15	11	8	194	125	100	12	8.8
NGDB-100	1000 {100}	24	44	210	連続	146	15	15	111	195	165	0.45	80	18	13	9	220	148	118	15	15.7


■パッドの寿命(仕事量)

 $\times 10^8 J\{\times 10^7 kgfm\}$


		次回調整ま	での寿命 **2		パッドの全寿命				
温度※1	100°C	150°C	200°C	250°C	100°C	150°C	200°C	250°C	
NGDB-10	0.16	0.10	0.08	0.05	7.5	4.6	3.8	2.4	
	{0.16}	{0.10}	{0.08}	{0.05}	{7.5}	{4.6}	{3.8}	{2.4}	
NGDB-20	0.71	0.43	0.35	0.23	23.0	14.1	11.5	7.4	
	{0.71}	{0.43}	{0.35}	{0.23}	{23.0}	{14.1}	{11.5}	{7.4}	
NGDB-50	2.26	1.39	1.13	0.72	71.4	43.9	35.7	22.9	
	{2.26}	{1.39}	{1.13}	{0.72}	{71.4}	{43.9}	{35.7}	{22.9}	
NGDB-100	4.23	2.60	2.12	1.35	139.1	85.6	69.6	44.5	
	{4.23}	{2.60}	{2.12}	{1.35}	{139.1}	{85.6}	{69.6}	{44.5}	

※1 温度はパッドの表面温度 ※ 2 初期ギャップ 0.1mmとした時

■NGDB型 ディスク外径・制動トルク曲線 (*μ*=0.33)

■NGDB型

■NGDB型 部品表

番号	部。	2	名	数量
٦	 1	1	ル	2
2	3 -	-	ク	2
3	アーマ	チュ	ア	2
4	رد ۱۲	,	ド	2
5	サ ポ	_	-	2
6	基礎	* E	台	1 2
7	バ		ネ	2
8	ガイドフ	ブッシ	ュ	2
9	調整が	- ツ	7	2
10	回り止め	カボル	-	2
11	ロック	ロッ	ド	2
12	ロック	ナッ	-	2
13	調整が	- ツ	-	2
14	六角穴付	皿ボル	, 	2
15	六角穴穴	ナボル	-	4
16	平 層	<u>Z</u>	金	4
17	バネ	座	金	4
18	コネク	7 タ	_	2
19	スプリン	ノグピ	ン	2
20	スプリン	ノグピ	ン	4
21	平 行	ピ	ン	4

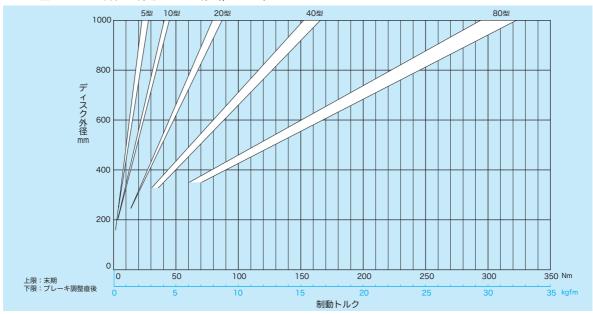
■NGDB型(シングル)

NGDB型は片押し型のブレーキを2台、向かい合わせたものです。そのため片側のみで使用することができます。取付けスペースのないときなどは、ディスクの片面側に単数又は複数台並べて使用することもできます。片押しの場合には型番の後にSを付けて下さい。(例:NGDB-10S)

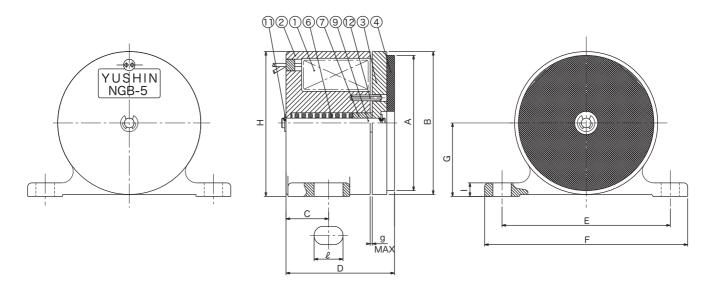
- ■スプリングで作動し、直流電流で解放する電磁ディスクブレーキです。
- ●電磁により解放し、スプリングによってブレーキをする無励磁作動ブレーキです。
- ○ストロークが大きいため、次回調整までの寿命が長く、ヘビーな仕事に用いられます。
- ●解放中にブレーキパッドは被ブレーキ体より完全にはなれているため、空転トルクの影響がなく、かつ無駄なパッドの摩耗がありません。
- ●取り付け、調整が簡単です。
- ●構造がシンプルであるため故障がありません。
- ●片押し、向かい合わせ、横並びと多様な取り付けが可能です。
- ●ブレーキ面は回転体の側面、外周面、端面と任意の場所に取り付け可能であり、既存の機械への取り付けが容易です。
- ●ブレーキの調整は取り付け用長穴を用いて行ないます。
- ●保持用として使用する場合には保持力の大きなコルク系も用意されています。

■NGB型 仕様・寸法表

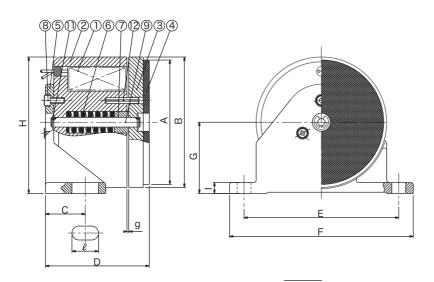
型番	制動力 (at μ =0.33) N[kgf]	電 圧 DCV	入力 W	時定数 ms {msec}	時間 定格	А	В	С	D (吸引時)	Е	F	G	Н	I	取付け ボルト	l	ストローク g (max)	質量 kg
NGB-5	50 {5}	24	20	40	連続	70	74	22	55	87	105	38	75	7	M8	15	1.1	2
NGB-10	100 {10}	24	29	60	連続	86	90	24.5	64	103	121	47	92	7	M8	15	1.3	3
NGB-20	200 {20}	24	38	90	連続	103	108	33	84.5	128	152	59	113	9	M10	22	1.5	5
NGB-40	400 {40}	24	60	160	連続	138	144	39	109	160	184	76	148	11	M10	25	2.0	10
NGB-80	800 {80}	24	82	250	連続	172	178	58	134.5	212	236	95	184	15	M12	30	2.4	20


■パッドの寿命(仕事量)

×108J	{×10	⁷ kgfm
-------	------	-------------------

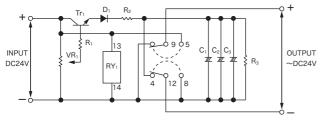

		次回調整ま	での寿命 ※2		パッドの全寿命				
温度 **1	100°C	150°C	200°C	250°C	100°C	150°C	200°C	250°C	
NGB-5	2.1	1.7	1.1	0.7	9.3	7.5	4.7	3.0	
	{2.1}	{1.7}	{1.1}	{0.7}	{9.3}	{7.5}	{4.7}	{3.0}	
NGB-10	3.9	3.1	2.0	1.3	16.0	12.8	8.0	5.1	
	{3.9}	{3.1}	{2.0}	{1.3}	{16.0}	{12.8}	{8.0}	{5.1}	
NGB-20	6.6	5.3	3.3	2.1	25.5	20.4	12.7	8.2	
	{6.6}	{5.3}	{3.3}	{2.1}	{25.5}	{20.4}	{12.7}	{8.2}	
NGB-40	16.4	13.2	8.2	5.3	63.9	51.1	32.0	20.5	
	{16.4}	{13.2}	{8.2}	{5.3}	{63.9}	{51.1}	{32.0}	{20.5}	
NGB-80	31.2	24.9	15.6	10.0	127.5	102.0	63.7	40.8	
	{31.2}	{24.9}	{15.6}	{10.0}	{127.5}	{102.0}	{63.7}	{40.8}	

※1 温度はパッドの表面温度 ※ 2 初期ギャップ0.2mmとした時


■NGB型 ディスク外径・制動トルク曲線 (*μ*=0.33)

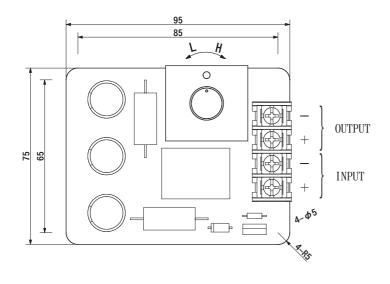
■NGB-5・10型

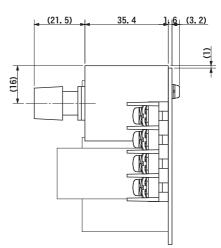
■NGB-20・40・80型


■部品表	Ē.			
番号	部	3 8 :	名	数量
1	⊐	イ	ル	1
2	3	_	ク	1
3	アー	- マチ	ュア	1
4	パ	ツ	ド	1
5	サ	ポー	- ト	1
6	バ		ネ	1
7	ガイ	ドブッ	シュ	1
8	止	めネ	・ジ	3
9		ツ	ド	1
11	止	め	輪	2
12	スプ	リング	゚ピン	2

■DG-07型

- ●デガウスは直流電源と電磁クラッチ・ブレーキとの間に並列 に接続して用いる残留磁気除去装置です。残留磁気の影響に より電磁クラッチ・ブレーキの作動が不完全な場合、遅い場 合に用います。逆電流の働きにより確実に作動させることが できます。
- ●電源からの直流電圧が遮断されると、デガウス内のコンデンサにより電磁クラッチ・ブレーキに僅かな直流逆電流を印加し電磁クラッチ・ブレーキ及びディスクの残留磁気を消滅させます。
- ●最適逆電流印加時間は電磁クラッチ・ブレーキの内部抵抗や機構により異なりますが0.1秒~0.5秒程度になります。 デガウスでは可変抵抗ツマミにより最適値のプリセットを行ないます。その後コンデンサの劣化がない限り可変抵抗ツマミは調整の必要はありません。
- ●デガウスは弊社の電磁クランプMDB型、電磁ディスクブレーキGDN型の為に開発されたものですが、他社の電磁クラッチ・ブレーキ及び電磁製品に対しても内部抵抗値が10Ω~100Ωの範囲にあれば有効に使用することができます。
- ▲電源とは極性を正しく接続し、定格以上の電圧を流さないで下さい。故障の原因になります。





■仕 様 DG-07型

入力電圧	DC24V±10%					
C/B 内部抵抗値	10Ω~100Ω					
印加時間	0.1秒~0.5秒					
印加電圧	DC0V~入力電圧					
リレー寿命	50万回以上 (定格負荷、開閉ひん度1,800回/h)					
コンデンサ寿命	2万~15万時間(環境温度による)					

■外形寸法

会社概要

商号友信株式会社設立昭和30年10月資本金2.000万円

事業内容 一般産業用ディスクブレーキの開発・製造・販売

所在地 本社·工場:神奈川県横浜市都筑区川向町1354-1

電話 (045)577-0095 FAX (045)577-9817

URL https://www.yushin-brake.co.jp/

代表者 代表取締役社長 石原淳

取引銀行横浜信用金庫

みずほ銀行 三菱UFJ銀行 三井住友銀行

会社沿革

昭和30年 石原肇により東京都大田区に友信機械有限会社を設立

機械式クラッチ・ブレーキ製造を開始

昭和34年 新型クラッチの新案登録権を取得、東京都発明奨励賞を受ける

昭和37年 社名を友信モータークラッチ株式会社に変更

資本金を200万円に増資

昭和38年 横浜工場新設

資本金を400万円に増資

昭和45年 社名を友信株式会社に変更 昭和46年 資本金を1,000万円に増資

昭和52年 神奈川県知事発明奨励賞を受ける

平成 9年 石原正雄代表取締役社長就任

石原肇取締役会長就任

平成10年 本社を東京都大田区より神奈川県横浜市に移転

資本金を2.000万円に増資

平成24年 石原淳代表取締役社長就任

石原正雄取締役会長就任

平成29年 エコアクション21の認証を取得

令和 3年 本社を神奈川県横浜市都筑区に移転

●クラッチ・ブレーキのトータルメーカー

〒224-0044 神奈川県横浜市都築区川向町1354-1

TEL: 045-577-0095 FAX: 045-577-9817

E-Mail: info@yushin-brake.co.jp

www.yushin-brake.co.jp

